पIEPEYNHЕH TH $\Sigma \Sigma Y M \Pi E P I \Phi O P A \Sigma ~ T \Omega N ~ Г E \Omega P Г \Omega N ~ M E ~ T H N ~$ ЕФАРМОГН THГ NEAГ КАП

Eגévŋ Пácıov

ЕЕЕТАГTIKH ЕПITPOПН：

П．$\Lambda \alpha \zeta \alpha \rho i ́ \delta \eta \varsigma, ~ К \alpha Ө \eta \gamma \eta \tau \eta \prime \varsigma ~ Г П А ~$
П．$\Sigma \pi \alpha \theta \eta ́ \varsigma, ~ К \alpha \theta \eta \gamma \eta \tau \eta ́ \varsigma ~ Г П А ~$
K．Тбцлоо́кац，Av $\alpha \pi \lambda . K \alpha \theta \eta \gamma \eta \tau \eta ́ \varsigma ~ Г П А ~$

Aөŋ́va，Máptıos 2008

Перıєхо́цєvа

Пعрі̀пчп $5-$
Кとца́入入10 1． 7－
 7－
1．1 Хрпбио́тпта тпऽ Δ เоікпопऽ． －
 9 －
 11 －
 15 －
1．5 To Kоıvотıко́ ка $\theta \varepsilon \sigma \tau \omega \dot{̧}$ үıа то $\beta \alpha \mu \beta \dot{\alpha} к ı$ 19 －
Кецád $\boldsymbol{\alpha 1 o} 2$ 22 －
 22 －
2．1 Єع ω ріа $\chi \alpha \rho т о р и \lambda \alpha к і о v ~$ 22 －
 23 －
2．3 Харточида่кıо ло $\lambda \lambda \alpha \pi \lambda \dot{\omega} v ~ \varepsilon л \varepsilon v \delta \dot{v} \sigma \varepsilon \omega v$ 26 －
 28 －
Кと甲à $\lambda \boldsymbol{\alpha 1 o} 3$ 31 －
 31 －
 31 －
3．2 MعӨoठo入oүía סıaxعipıoŋ乌 кıvסưvou 33 －
3.3 Tu่лоı кıvסúvov 39 －
 －42－
3．5 Oрıбиós vлобعіүиатоц －45－
 －46－
 49－
Кефád $\alpha ı 4$ 50
 50 －
 50 －
 51－
 55 －
 56 －
4．5 MéӨooos Simplex 57 －
 59 －
4．7 Мعтаßع入тьотолоі́ךбך 60 －
4．8 Елі̀ $\lambda \nu \sigma \eta ~ \pi \rho о \beta \lambda \eta \mu \dot{\alpha} \tau \omega v \mu \varepsilon$ то Excel 61 －
Кє甲àdato 5 66 －
 66 －
5.1 Пароибiaoŋ үعvıкой vлобвіүүатоя 66 －
5．1．1 Ү $ь \tau \tau \dot{\alpha} \mu \varepsilon \vee \eta ~ К А П ~ л \rho ı v ~ т о ~ 2005 ~$ 66
5．1．2 Ү甲ıбт $\dot{\mu} \mu \nu \eta$ КАП $\mu \varepsilon \tau \alpha \dot{\alpha}$ то 2005 68 －
Кє甲á̀ $\alpha ı \mathbf{6}$ 70 －
 70 －
 70－
 74 －
 77 －
 80 －
 83
 87 －
 90 －
 94 －
Кецá̀入аıо 7 97 －
$\Sigma \nu \mu л \varepsilon \rho \dot{\alpha} \sigma \mu \alpha т \alpha$ 97 －
Пара́ $\rho t \neq \mu \alpha$ I． 103 －
Пара́ртпиа II 115
Bı $\beta \lambda ı$ оүрарі́а 125 －

Evzapıoties

 $\mu \circ v \mu \varepsilon \lambda \varepsilon ̇ \tau \eta \varsigma$.

 $\varepsilon \kappa \mu \varepsilon \tau \alpha \lambda \lambda \varepsilon \dot{\sigma} \sigma \varepsilon \omega v$.

Пері̀лиұ

 $\sigma \cup \rho \rho і к \nu \omega \sigma \eta ~ \tau \omega v ~ \kappa \varepsilon \rho \delta \omega ̀ v ~ \tau \omega v ~ \varepsilon \kappa \mu \varepsilon \tau \alpha \lambda \lambda \varepsilon \dot{v} \sigma \varepsilon \omega v$. Kaı ol $\tau \varepsilon ่ \sigma \sigma \varepsilon \rho \varepsilon ı \varsigma ~ Ф \alpha ̉ \rho \mu \varepsilon \varsigma ~$

 عлı入̀̇そ̇દı.

Keqà̀ ${ }^{1} 101$

 оаv аү $\rho о$ тєऽ.

 $\varepsilon \kappa \mu \varepsilon \tau \alpha \dot{\alpha} \lambda \varepsilon \varepsilon \operatorname{co}^{\prime} \eta$.

 ठıáӨعбךऽ $\pi \rho о \ddot{o}$

 лєрıßа̀ $\lambda \lambda$ ov.

 алєıкоviそєтаı $\sigma \tau о ~ \sigma \chi \dot{\eta} \mu \alpha 1$.

1) Проүрацнатוбнós (planning)

[^0]

2) Eкт $\grave{\text { 2 }} \lambda \varepsilon \sigma \eta$ ह̇ppou (implementation)

3) ${ }^{\prime} \mathrm{E} \lambda \varepsilon \gamma \chi \circ \mathrm{O}$ (control)

ППүウ่: Agricultural Management Economics, Rae A.

5. $\varepsilon \varphi \alpha \rho \mu о ү \eta \dot{\tau \eta}$ т α ло́рабпऽ

 $\pi \rho غ ̇ л \varepsilon \imath ~ v a ~ к а т а ү \rho а \varphi о и ́ v . ~$

 η лара́ $\eta \eta \psi \eta$ ка́лоוov бтоххદiov.

 ка入ウ่ $\lambda \dot{\jmath} \sigma \eta$.

[^1]

2. По $\lambda \lambda \alpha \pi \lambda \eta \dot{n} \sigma \nu \mu \mu \dot{\rho} \rho \varphi \omega \sigma \eta$

 ктпрот $о р ı к \alpha \dot{\alpha} \psi \cup \chi \alpha v \theta \dot{~}$.

 бхєтıкウ่ бŋ่ $\mu \alpha v \sigma \eta$.

- ßóбкпопऽ.

 $\mu \varepsilon \tau \alpha \kappa ı v \dot{\jmath} \sigma \varepsilon ı \varsigma ~ \zeta \dot{\omega} \omega v$.

3. $\Delta ı \alpha \varphi о \rho о т о i ́ n \sigma n ~ T \omega v ~ \varepsilon v i \sigma x u ́ \sigma \varepsilon \omega v ~$

- 2005: 3\%
- 2006: 4\%
- 2007-2012: 5\%

4. Σ v̇oтquа Парохท่s $\Sigma v \mu \beta o u \lambda \omega \dot{\omega}$

[^2]

 $\tau \omega v \pi \rho o i ̈ o ́ v \tau \omega v$.

 $\mu \varepsilon$ то vло̇доıло 65\% va $\pi \rho о о \rho i \zeta \varepsilon \tau \alpha ı ~ ү ı \alpha ~ \tau \eta \nu ~ \varepsilon v ı a i \alpha ~ \varepsilon v i \sigma \chi \cup \sigma \eta . ~ H ~ \mu \varepsilon \rho ı к \grave{~}$

 бvбтウ่ $\mu \alpha \tau о \varsigma ~ \varepsilon v ı \sigma \chi \dot{\sigma} \sigma \varepsilon \omega v$.

Kعøá入入ato 2

$\Delta ı \alpha \chi i \rho i \sigma \eta ~ \chi \alpha \rho \tau о ф v \lambda \alpha к i o v ~$

2.1 ©عюрі́ $\chi \alpha \rho \tau о ф v \lambda \alpha к i o v ~$

 $\mu \varepsilon$ то $\chi \alpha \mu \eta \lambda о ̇ \tau \varepsilon \rho о ~ к і v \delta \cup v o . ~$

[^3]\[

$$
\begin{gathered}
\mathrm{E}\left(\mathrm{r}_{\mathrm{p}}\right)=\mathrm{xE}\left(\mathrm{r}_{\mathrm{A}}\right)+(1-\mathrm{x}) \mathrm{E}\left(\mathrm{r}_{\mathrm{B}}\right), \\
\sigma_{\mathrm{p}}^{2}=\mathrm{x}^{2} \sigma^{2}{ }_{\mathrm{A}}+(1-\mathrm{x})^{2} \sigma^{2}{ }_{\mathrm{B}}+2 \mathrm{x}(1-\mathrm{x}) \operatorname{Cov}\left(\mathrm{r}_{\mathrm{A}}, \mathrm{r}_{\mathrm{B}}\right)
\end{gathered}
$$
\]

$$
\begin{equation*}
\sigma_{\mathrm{p}}=\sqrt{ }\left[\mathrm{x}^{2} \sigma^{2} \mathrm{~A}+(1-\mathrm{x})^{2} \sigma^{2} \mathrm{~B}+2 \mathrm{x}(1-\mathrm{x}) \operatorname{Cov}\left(\mathrm{r}_{\mathrm{A}}, \mathrm{r}_{\mathrm{B}}\right)\right] \tag{1}
\end{equation*}
$$

 о μ ó $\varphi \omega$.

H ouvסıaкú $\mu \alpha v \sigma \eta$ ıбov่таı $\mu \varepsilon$:

$$
\operatorname{Cov}\left(\mathrm{r}_{\mathrm{A}}, \mathrm{r}_{\mathrm{B}}\right)=\sigma_{\mathrm{A}} \times \sigma_{\mathrm{B}} \times \rho_{\mathrm{AB}}
$$

[^4]

 $\alpha \pi o \delta o ́ \sigma \varepsilon \omega v$ tous.

 $\mu \varepsilon ̇ \sigma o v ~ o ́ \rho o v ~ \tau \omega v ~ \kappa ı v \delta u ́ v \omega v ~ \tau \omega v ~ \varepsilon \pi \varepsilon v \delta u ́ \sigma \varepsilon \omega v ~ a \pi o ́ ~ \tau ı S ~ o \pi o i \varepsilon ৎ ~ a л о \tau \varepsilon \lambda \varepsilon i \tau \alpha ı . ~$

 $\sigma u v \tau \varepsilon \lambda \varepsilon \sigma \tau \eta$ íoo $\mu \varepsilon$ то $\mu \eta \delta \dot{\varepsilon} v$ кıvoúvтаı лáv $\omega \sigma \tau \eta \kappa \alpha \mu \pi \dot{\lambda} \lambda \eta \mathrm{A} \Delta \Gamma$.

$\Delta \mathrm{l} \dot{\gamma} \boldsymbol{\rho} \boldsymbol{\alpha}^{\mu} \mu \boldsymbol{\mu} 1$

 тоu乌 ларак $\boldsymbol{\tau} \tau \omega$ ти่лоиৎ:

$$
\begin{aligned}
& E\left(r_{\mathrm{p}}\right)=\sum_{j=1}^{N} \mathrm{x}_{\mathrm{i}} \mathrm{E}\left(\mathrm{r}_{\mathrm{i}}\right) \\
& \sigma_{\mathrm{p}} z_{\mathrm{p}}=\sum_{\mathrm{j}=1}^{\mathbb{N}} \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}} \mathrm{z}_{\mathrm{j}} \sigma_{\mathrm{i}} \sigma_{\mathrm{j}} \mathrm{p}_{\mathrm{ij}}
\end{aligned}
$$

 عлغ̇vסvơך i.

$\Delta \mathrm{t} \dot{\alpha} \boldsymbol{\gamma} \rho \alpha \mu \mu \alpha 2$

Mia $\varepsilon \pi \dot{\varepsilon} v \delta v \sigma \eta$ عivaı акivסuvך ótav $\dot{\varepsilon} \chi \varepsilon ı ~ \mu \eta \delta \varepsilon v ı \kappa o ́ ~ к i v \delta u v o, ~$

$$
\begin{gather*}
\mathrm{E}\left(\mathrm{r}_{\mathrm{p}}\right)=\mathrm{xE}\left(\mathrm{r}_{\mathrm{A}}\right)+(1-\mathrm{x}) \mathrm{r}_{\mathrm{F}}, \\
\sigma_{\mathrm{p}}{ }^{2}=\mathrm{X}^{2} \sigma^{2}{ }_{\mathrm{A}}+(1-\mathrm{x})^{2} \sigma^{2}{ }_{\mathrm{F}}+2 \mathrm{X}(1-\mathrm{x}) \sigma_{\mathrm{A}} \sigma_{\mathrm{F}} \rho_{\mathrm{AF}} \tag{2}
\end{gather*}
$$

$$
\sigma^{2}{ }_{p}=x^{2} \sigma^{2} \mathrm{~A}
$$

$$
\sigma_{\mathrm{p}}=\mathrm{x} \sigma_{\mathrm{A}}
$$

[^5]$$
\frac{E\left(r_{A}\right)-r_{F}}{\sigma_{A}}
$$

$\Delta \mathrm{l} \dot{\gamma} \rho \alpha \mu \mu \alpha 3$

Δ tó $\boldsymbol{\gamma} \rho \alpha \mu \mu \alpha 4$

 ß

 $\pi \rho o ́ t a \sigma \eta$ Н.

Kعøá入入10 3 $\Delta \mathrm{ta} \mathrm{\chi} \mathrm{\varepsilon ipıo} \mathrm{\eta} \mathrm{Kıv} \mathrm{\delta úvov}$

3.1 Про́б由ла $\sigma v \sigma \chi \varepsilon \tau \zeta \grave{\mu} \mu \varepsilon v \alpha \mu \varepsilon$ то кivסvvo

 vлобтท่ $\rho ı \xi \eta$ ．

－$\alpha ү \rho o ́ \tau \varepsilon s$
－аүротєкоі $\sigma \dot{u} \mu \beta$ оидоı

1) ESpai $\omega \sigma \eta$ үعvıкoú $\pi \lambda \alpha ı \sigma i o u ~$

бла่

3) Δ оиض $\pi \rho о \beta \lambda \eta \dot{\mu} \mu \tau \tau$

4) $\mathrm{Av} \dot{\alpha} \lambda \nu \sigma \eta \varepsilon \pi \tau \lambda 0 \gamma \omega \dot{\omega} \kappa \alpha ı \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \dot{\alpha} \tau \omega v$

 лробєктıко่тєрך $\sigma \cup \sigma \tau \eta \mu \alpha \tau ı к \grave{\jmath} \alpha v \dot{\alpha} \lambda \nu \sigma \eta$.

6) Eфa $\rho \mu$ оүท́ каı $\delta ı \alpha \chi \varepsilon i \rho ı \sigma \eta$

7) 'Ел ${ }^{2}$

 алоழа่бєıऽ лрદ̇лєı va $\lambda \eta \varphi \theta$ oùv.

3.3 Tủ̃ot KıvỜvov

 $\alpha v \theta \rho \omega ่ \pi ı v o s$.

 $\sigma u v \theta \eta \kappa \dot{\omega} v ~ л \alpha \dot{\alpha} \omega \sigma \tau \eta \kappa \alpha \lambda \lambda ı \dot{\varepsilon} \rho \gamma \varepsilon ı \alpha$.

 $\sigma \chi \dot{\varepsilon} \sigma \eta \mu \varepsilon$ тous $\dot{\alpha} \lambda \lambda o u s$.

2) To $\boldsymbol{\mu} \dot{\alpha} \alpha \varsigma$ marketing $\kappa \alpha \imath \kappa i v \delta u v o \varsigma ~ \tau \imath \mu \dot{\omega} v$

 $\mu \varepsilon \tau \alpha \beta \lambda \eta \tau$ о่тŋт α.

 $\alpha \rho \kappa \varepsilon \tau \alpha \dot{\alpha} \varepsilon \mu \mu \tau \dot{\alpha} \beta \lambda \eta \tau \eta$.

3) Oıкоvoцıко́s кivסuvos

 бто $\mu \dot{\lambda} \lambda \lambda$ ov $\mu \varepsilon$ tous íSous ópous.
4) Nouккós кivঠuvos

 $\alpha \beta \varepsilon \beta \alpha$ о́тптт.
$\Sigma \tau \eta \nu \pi \alpha \rho o v ่ \sigma \alpha$ $\delta ı \pi \lambda \omega \mu \alpha \tau ı \dot{\eta}, \quad \pi \alpha \rho \alpha \tau \eta \rho \varepsilon i \tau \alpha ı \pi \omega \varsigma$ $\varepsilon \pi \eta \rho \varepsilon \dot{\alpha} \zeta \varepsilon ı \dot{\varepsilon} v a \varsigma ~ \tau \dot{\varepsilon} \tau o l o S ~ к i v \delta v v o 乌 ~ \mu i \alpha ~ \pi o \lambda \dot{v} ~ \mu \varepsilon \gamma \dot{\alpha} \lambda \eta$ o $\mu \dot{\alpha} \delta \alpha$

5) $\underline{A v \theta \rho \omega ่ \pi ı v o s ~ к i v \delta u v o s ~}$

 $\tau \eta \lambda \dot{\eta} \psi \eta \mu \alpha \kappa \rho о \chi \rho o ́ v ı \omega v$ алофа́бє ωv.

 єлөөицŋтós.

$$
\mathrm{U}^{(1)}(\mathrm{w})>0
$$

[^6]

2. $\mathrm{U}^{(2)}(\mathrm{w})=0, \delta \eta \lambda \dot{\omega} v \varepsilon \imath ~ \alpha \delta ı \alpha \varphi о \rho i \alpha ~ \pi \rho о \varsigma ~ t o ~ к i v \delta u v o ~$

甲aivetaı otך $\sigma \cup v \varepsilon ̇ \chi \varepsilon ı a:$


```
\(\mathrm{r}_{(\mathrm{w})}=2.0, \mu \mathrm{\kappa} \rho \dot{\eta} \alpha л о \sigma \tau \rho о \varphi \eta\) д л \(\rho\) оऽ то кіvঠvvo
```


 рıбкд่рعı．

Пivakas 1	
Мغ̀үıбто \％лобобто̇ лєрıобоias лои рıбка́ретаı	Avtiototyos ouvtedeotís алобтро甲ク่S кıvర̛́vov
20 \％	O
18 \％	0，5
17%	1，0
14 \％	2，0
12 \％	3，0
11 \％	4，0

[^7]

 $\alpha \pi \alpha \rho \alpha i \not \eta \tau \varepsilon \varsigma ~ ү ı \alpha ~ \tau \eta \nu \varepsilon \pi i \lambda \cup \sigma \eta \dot{\eta} \tau \eta$.

 $\kappa \alpha Ө$ орıб μ ó $\tau \omega v \sigma \chi \varepsilon ̇ \sigma \varepsilon \omega v \mu \varepsilon \tau \alpha \xi \dot{v} \tau \omega v \mu \varepsilon \tau \alpha \beta \lambda \eta \tau \dot{v} v \varepsilon v o ́ s ~ \pi \rho о \beta \lambda \eta \dot{\mu} \mu \tau о \varsigma$. K $\lambda \alpha \sigma \sigma ı \kappa o ́ ~$ $\pi \alpha \rho \dot{\delta \varepsilon є ү \mu \alpha ~ \alpha л о \tau \varepsilon \lambda о v ่ v ~ \tau \alpha ~ \mu о v \tau غ ̇ \lambda \alpha ~ ү \rho а \mu \mu к о и ่ ~ \pi \rho о ү \rho а \mu \mu \alpha \tau ı \sigma \mu о и ่, ~ \tau \alpha ~ о л о і а ~}$

[^8]

 $\varepsilon \pi l \chi \varepsilon i \rho \eta \sigma \eta$.

$$
\mathrm{U}(\mathrm{x})=\mathrm{c}+\mathrm{bx}+\mathrm{ax}^{2},
$$

[^9]

```
    U(x) = \eta \sigmauv\alphá\rho\tau\eta\sigma\eta \chi\rho\eta\sigma\iota\muо́т\eta\tauа\varsigma
    a,b,c = л\alpha\rho\alphá\mu\varepsilon\tau\rhoоь лоv \pi\rhoо\sigma\deltaıо\rhoi\zetaovv \tau\eta\nu \alphaк\rhoıß\etaं \varphiv́\sigma\eta \tau\etaS
    \alphav\tauוк\varepsilon\iota\mu\varepsilonvıк\etȧऽ \sigmauv\alphȧ\rho\tau\eta\sigma\etaS
```


 Ало́к $\lambda_{ı} \boldsymbol{\eta}$ S (Mean - Standard Deviation Approach, E-S). E甲óбov η סıакú $\mu \alpha v \sigma \eta$

 $\tau \eta \varsigma ~ М \dot{\varepsilon} \sigma \eta \varsigma ~ А л о ́ \delta o o \eta \varsigma ~-~ Т ข л ı к \eta ่ \varsigma ~ А л о ́ к \lambda ı \sigma \eta \varsigma . ~$

Kepá入aıo 4

 $\pi o ́ \rho \omega v \mu \varepsilon \tau \alpha \xi \dot{v} \varepsilon v \alpha \lambda \lambda \alpha \kappa \tau \iota \kappa \dot{\omega} v \delta \rho \alpha \sigma \tau \eta \rho ı \tau \dot{\eta} \tau \omega v$, ка่ $\tau \omega$ ало́ $\sigma v v \theta \dot{\eta} \kappa \varepsilon \varsigma$

 катпүорієя:

 óxı 甲voıка́ $\mu \varepsilon ү$ غ̇ $\theta \eta$

 үраниккєя

 $\mu \varepsilon \tau \alpha \beta \lambda \eta \tau \dot{\omega} v \alpha$ о̇фабпц.

 $\kappa \tau \lambda$).
 $\sigma v v o ́ \lambda o v ~ \tau \omega v ~ \lambda u ́ \sigma \varepsilon \omega v ~ U=\{x \in R y / A x \leq b, x \geq 0\} \mu \varepsilon \tau \alpha \dot{\alpha} \alpha \pi o ́ ~ \tau \eta ~ \delta \iota \alpha \mu o ́ \rho \varphi \omega \sigma \eta$

 $\mu \varepsilon \tau \alpha \beta \lambda \eta \tau \dot{v} \alpha л о ̇ \varphi \alpha \sigma \eta \varsigma$.

$$
\begin{aligned}
& \text { [max] } \mathrm{g}_{1}(\mathrm{x})=\mathrm{c}_{11} \mathrm{X}_{1}+\mathrm{c}_{12} \mathrm{X}_{2}+\ldots+\mathrm{c}_{1 \mathrm{y}} \mathrm{X}_{\mathrm{y}} \\
& {[\max] \mathrm{g}_{2}(\mathrm{x})=\mathrm{c}_{21} \mathrm{X}_{1}+\mathrm{c}_{22} \mathrm{X}_{2}+\ldots+\mathrm{c}_{2 \mathrm{y}} \mathrm{X}_{\mathrm{y}}} \\
& {[\max] \mathrm{g}_{\mathrm{n}}(\mathrm{x})=\mathrm{c}_{\mathrm{n} 1} \mathrm{X}_{1}+\mathrm{c}_{\mathrm{n} 2} \mathrm{X}_{2}+\ldots+\mathrm{c}_{\mathrm{ny}} \mathrm{X}_{\mathrm{y}}}
\end{aligned}
$$

上tádıo 3 ${ }^{\circ}$: Movtè̀ α aлópaōs

 (крıтท่рı $\beta \varepsilon \lambda$ тıбтолоїббп):

$$
\mathrm{g}(\mathrm{x})=\mathrm{z}=\mathrm{c}_{1} \mathrm{X}_{1}+\mathrm{c}_{2} \mathrm{X}_{2}+\ldots+\mathrm{c}_{\mathrm{y}} \mathrm{X}_{\mathrm{y}}
$$

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 y} x_{y} \leq \dot{\eta}=\dot{\eta} \geq b_{1} \\
a_{21} x_{1}+\alpha_{22} x_{2}+\ldots+a_{2 y} x_{y} \leq \dot{\eta}=\dot{\eta} \geq b_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
a_{m_{1} x_{1}}+\alpha_{m 2} x_{2}+\ldots+a_{m y} x_{y} \leq \dot{\eta}=\dot{\eta} \geq b_{m} \\
x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{y} \geq 0
\end{gathered}
$$

 $\mu \varepsilon \tau \alpha \beta \lambda \eta \tau \dot{\omega} v \alpha$ о̇ф $\alpha \sigma \eta \varsigma$.

$$
[\max] \dot{\eta}[\min] \mathrm{z}=\mathrm{c}^{\mathrm{t}} \mathrm{x}
$$

$$
\begin{gathered}
\mathrm{A} x \leq \mathrm{b} \\
\mathrm{x} \geq \mathrm{o}
\end{gathered}
$$

ó $\boldsymbol{\sim}$

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 y} \\
a_{21} & \alpha_{22} & \ldots & \alpha_{2 y} \\
\ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \ldots & a_{m y}
\end{array}\right] \quad b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
b_{m}
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\ldots \\
x_{y}
\end{array}\right] \quad c=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
\ldots \\
c_{y}
\end{array}\right]
$$

 бто $\chi \dot{\rho} \rho о$ тоv $\mu \eta ~ ү \rho \alpha \mu \mu \kappa о и ̆ ~ л \rho о ү \rho а \mu \mu \alpha т ו \sigma \mu о v ่ . ~$

 $\pi \rho о ү \rho \alpha \mu \mu \alpha \tau \iota \sigma \mu$ ó $\lambda \varepsilon$ ह́ $ү \varepsilon \tau \alpha ı ~ \alpha \sigma \alpha \varphi \eta ่ \varsigma . ~$

 $\pi \rho о ү \rho а \mu \mu \alpha т ь \sigma \mu v ่$.

4.5 Mè̇óoc Simplex

 $\pi \rho о ́ \tau ข \pi \eta ~ \mu о \rho \varphi \grave{:}$

$$
[\max] \mathrm{z}=\mathrm{c}^{\mathrm{t}} \mathrm{x}
$$

$$
\begin{gathered}
\mathrm{Ax}=\mathrm{b} \\
\mathrm{x} \geq 0
\end{gathered}
$$

 vла́ $\rho \chi o u v$.

 $\pi \rho о ү \rho \alpha \mu \mu \alpha \tau ı \sigma$ ós.

О Тетраүшvıко́s Проүранцатıоцós (Quadratic programming)

$$
\begin{equation*}
\mathrm{CE}=\mathrm{E}-0,5 \mathrm{r}_{\mathrm{A}} \mathrm{~V} \tag{3}
\end{equation*}
$$

 V η ठıаблора́.

 т о́ло.

4.7 Мعт $\alpha \boldsymbol{\beta} \lambda$ тเбтолоі́ $\boldsymbol{\gamma} \boldsymbol{\eta}$

 $\mu \varepsilon \tau \alpha \beta \varepsilon \lambda \tau ו \sigma \tau о л о і \eta \sigma \eta \varsigma)$.

 η ß $̀ \lambda \tau ı \sigma \tau \eta ~ \lambda u ́ \sigma \eta ~ \delta ı \alpha \tau \eta \rho \varepsilon i t \alpha ı . ~$

 $\dot{\alpha} \lambda \lambda$ oı $\sigma v \vee \tau \varepsilon \lambda \varepsilon \sigma \tau \varepsilon ̇ S ~ \pi \alpha \rho \alpha \mu \varepsilon ́ v o u v ~ \sigma \tau \alpha \theta \varepsilon \rho o i, ~ v \pi o ́ \theta \varepsilon \sigma \eta ~ \pi o v ~ \delta \varepsilon ~ \varepsilon i v a ı ~ \pi o \lambda \dot{~}$ $\rho \varepsilon \alpha \lambda_{\imath \sigma \tau} \sigma \eta^{11}$.

[^10]
4.8 Елі̀ $\boldsymbol{\lambda} \boldsymbol{\sigma} \eta \pi \rho о \beta \lambda \eta \mu \alpha \dot{\alpha} \omega v \mu \varepsilon$ то Excel

 каӨорıбтєi o $\beta \dot{\varepsilon} \lambda \tau \iota \sigma \tau o s ~ \sigma v v \delta v a \sigma \mu o ́ s ~ к \alpha \tau \alpha v o \mu ウ ่ S ~ \pi o v ~ o \delta \eta \gamma \varepsilon i ~ \sigma \varepsilon ~$

1. Katá $\sigma \tau \rho \omega \sigma \eta$ tou μ ovt $\dot{\lambda} \lambda 0 \cup$

2. X X

=SUMPRODUCT (\$L\$11:\$P\$11;L14:P14)

=SUMPRODUCT (\$L\$11:\$AB\$11;L12:AB12)

 кغ́рঠоц каı о кіvঠuvos.

Eıкóva 2: To $\pi \lambda$ aíaıo $\delta ı a \lambda$ ópou tov Solver

 єлı入оүŋ̆ Min.
 $\mu \varepsilon \tau \alpha \beta \lambda \eta \tau \varepsilon$ с $\alpha \pi o ́ \varphi \alpha \sigma \eta \varsigma$.

Subject to the Constraints: Eıớүovtaı ol $\pi \varepsilon \rho ı \rho ı \sigma \mu о i ~ \tau o v$

 $\mu \eta \delta$ غ่v.

Kepádalo 5

лєрілтноŋ乌

5.1.1 Y甲ıбто́ $\mu \varepsilon v \eta$ КАП л $\rho ı v$ то 2005

 $\gamma \iota \alpha \kappa \dot{\partial} \theta \varepsilon \varepsilon \kappa \mu \varepsilon \tau \dot{\alpha} \lambda \lambda \varepsilon v \sigma \eta, \mu \varepsilon \beta \alpha \dot{\alpha} \neq \eta$ тоv тט่ло:

 Elamin каı Rogers (1992).

$$
\mathrm{E}(\mathrm{U})=\mathrm{E}-\lambda \times \sigma
$$

о́лоv $\mathrm{E}=\alpha v \alpha \mu \varepsilon v$ о́ $\mu \varepsilon v o$ к $\dot{\varepsilon} \rho \delta$ os
$\lambda=\sigma u v \tau \varepsilon \lambda \varepsilon \sigma \tau \eta ่ \varsigma ~ \alpha \pi о \sigma \tau \rho о \varphi \eta ่ \varsigma ~ \kappa ı v \delta$ v่vou
$\sigma=\tau \cup \pi ı \kappa \grave{\alpha} \alpha$ ло́к $\lambda ı \sigma \eta$

 Екиєта่ $\lambda \lambda \varepsilon v \sigma п ŋ$.

5.1.2 Y甲ıот $\dot{\alpha} \mu \varepsilon v \eta$ КАП $\mu \varepsilon \tau \dot{\alpha}$ то 2005

Кعфа́入аıо 6

6．1 Алотє $\lambda \dot{\varepsilon} \sigma \mu \alpha \tau \alpha$ Екцєт $\dot{\alpha}^{\lambda} \lambda \varepsilon v \sigma \eta 乌 1$（КАП лрıv 2005）

 катаvа入ف́vouv．

2005

ミvvtع入દのтท่S алобтрочท่s Kıvסúvov（ λ ）	Avaucvóuevo кย̇рбос（€）	Тขлткท่ ало́к久ıбワ （ σ ）					
			Bацßáкı	इк入про́ इıtópı	Малако́ इıtápı	Apaßȯotros	$\mathbf{M \eta}$ ¢икท
0，0	48505	10266	224，0	65，0	0，0	0，0	0，0
0，2	48505	10266	224，0	65，0	0，0	0，0	0，0
0，4	48505	10266	224，0	65，0	0，0	0，0	0，0
0，6	48505	10266	224，0	65，0	0，0	0，0	0，0
0，8	48505	10266	224，0	65，0	0，0	0，0	0，0
1，0	48505	10266	224，0	65，0	0，0	0，0	0，0
1，2	48505	10266	224，0	65，0	0，0	0，0	0，0
1，4	48505	10266	224，0	65，0	0，0	0，0	0，0
1，6	48505	10266	224，0	65，0	0，0	0，0	0，0
1，8	48505	10266	224，0	65，0	0，0	0，0	0，0

2,0	48505	10266	224,0	65,0	0,0	0,0	0,0
2,2	42051	7177	162,6	65,0	0,0	61,4	0,0
2,4	39319	5979	137,0	65,0	0,0	87,0	0,0
2,6	37417	5216	119,4	65,0	0,0	104,6	0,0
2,8	36796	4981	113,7	65,0	0,0	110,3	0,0
3,0	35819	4644	105,0	65,0	0,0	119,0	0,0
3,2	35106	4413	98,7	65,0	0,0	125,3	0,0
3,4	34556	4246	93,8	65,0	0,0	130,2	0,0
3,6	34114	4120	89,9	65,0	0,0	134,1	0,0
3,8	33750	4022	86,6	65,0	0,0	137,4	0,0
4,0	33444	3943	83,9	65,0	0,0	140,1	0,0
4,5	29431	2989	60,4	118,8	0,0	109,8	0,0
5,0	26965	2479	47,4	150,9	0,0	90,8	0,0

 ó $\omega \omega \varsigma$ ท̇tav $\alpha v \alpha \mu \varepsilon v o ́ \mu \varepsilon v o$.

 ларакд่т ω :

Evvteneatỉs алоотро甲ท่S кıvסひ்vov（ λ ）	Aлó入vtŋ Méō Ало́к $\boldsymbol{\lambda}_{\mathbf{l}} \boldsymbol{\sigma} \boldsymbol{\eta}$（MAD）
0，0	0
0，2	0
0，4	0
0，6	0
0，8	0
1，0	0
1，2	0
1，4	0
1，6	0
1，8	0
2，0	0
2，2	24，56
2，4	34，8
2，6	41，84
2，8	44，12
3，0	47，6
3，2	50，12
3，4	52，08
3，6	53，64
3，8	54，96
4，0	56，04
4，5	65，44
5，0	70，66

 лоv кข μ аivetal ало́ о $\dot{\varepsilon} \omega \mathrm{c} 2$.

Evvteneatỉs алобтрочй乌 кıvŠ́vov (λ)	Avaucvóucvo кغ́рঠос (€)	Тчлıкท் ало́клıоŋ (σ)							
			Bацßа́кк extó̇tクons	Вацßа́кк	इклпро́ Etúapu	Màakó Etúápı	Apaßóoitos	МПбıкй	Bíkos
0,0	12503	4165	3,8	35,3	171,8	0,0	0,0	78,1	26,5
0,2	12503	4165	3,8	35,3	171,8	0,0	0,0	78,1	26,5
0,4	12503	4165	3,8	35,3	171,8	0,0	0,0	78,1	26,5
0,6	12503	4165	3,8	35,3	171,8	0,0	0,0	78,1	26,5
0,8	12431	4050	0,0	34,3	174,7	0,0	3,8	76,2	27,3
1,0	11905	3493	0,0	20,0	183,3	0,0	15,3	70,5	29,6
1,2	10827	2516	0,0	18,6	189,4	0,0	33,9	47,1	39,0
1,4	10301	2106	0,0	22,0	190,7	0,0	42,3	34,0	44,2
1,6	10034	1927	0,0	23,7	191,4	0,0	46,6	27,3	46,9
1,8	9866	1828	0,0	24,8	191,8	0,0	49,3	23,1	48,5
2,0	8719	1236	62,0	19,3	165,4	0,0	29,8	12,5	52,8
2,2	8007	894	102,9	15,3	147,9	0,0	16,3	6,6	55,2
2,4	7714	765	119,8	13,7	140,7	0,0	10,7	4,1	56,2
2,6	7542	697	129,7	12,7	136,5	0,0	7,5	2,7	56,7
2,8	7426	654	136,3	12,1	133,6	0,0	5,3	1,7	57,1
3,0	7341	624	141,2	11,6	131,5	0,0	3,6	1,0	57,4
3,2	7275	603	145,0	11,2	129,9	0,0	2,4	0,5	57,6
3,4	6487	362	167,9	6,8	79,5	0,0	0,8	0,0	51,0
3,6	5224	0	200,0	0,0	0,0	0,0	0,0	0,0	40,0
3,8	5178	1	199,9	0,0	0,1	0,0	0,0	0,0	40,0
4,0	5224	0	200,0	0,0	0,0	0,0	0,0	0,0	40,0

 Екцєта́入入

 КАП.
 $\pi \lambda \varepsilon \dot{\varepsilon} о v ~ \gamma \iota \alpha ~ \kappa \alpha \dot{\alpha} \theta \varepsilon ~ \gamma \varepsilon \omega \rho \gamma \iota \kappa \eta ่ ~ \varepsilon \kappa \mu \varepsilon \tau \alpha \dot{\alpha} \lambda \varepsilon v \sigma \eta ~ \gamma \iota \alpha ~ \sigma \omega \sigma \tau o ́ ~ \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \mu o ́ ~ к \alpha \iota ~ \varepsilon \dot{v} \rho \varepsilon \sigma \eta ~$

 то лотıбтıко́ $\dot{\varepsilon} \delta \alpha \varphi о$ ($224 \sigma \tau \rho \dot{\mu} \mu \mu \alpha \tau \alpha$).

 ото $\mu \dot{\lambda} \lambda \lambda o v$.

 бuvtะ入દбтฑ่ алобтро甲ク่ऽ кıvסủvov．

2005

इvvieneotìs алоотроџท่S кıvסúvov（ λ ）	Avauevó $\mu \varepsilon v o$ ке்рסос（€）	Тขлtкท่ ало́к $\boldsymbol{\lambda} \boldsymbol{1} \boldsymbol{\sigma}$ （ σ ）	$\Sigma \tau \rho \dot{¢} \mu \mu \alpha \tau \alpha$ ка入入ıépyeıas				
			Bацßáкıı	$\Sigma \kappa \lambda \eta \rho \dot{o}$ Eıtápı	Малако́ Etcápı	Apaßȯotros	
0，0	13917	2793	79，7	35，3	0，0	0，0	0，0
0，2	13917	2793	79，7	35，3	0，0	0，0	0，0
0，4	13917	2793	79，7	35，3	0，0	0，0	0，0
0，6	13917	2793	79，7	35，3	0，0	0，0	0，0
0，8	13917	2793	79，7	35，3	0，0	0，0	0，0
1，0	13917	2793	79，7	35，3	0，0	0，0	0，0
1，2	13665	2580	74，4	35，5	0，0	5，1	0，0
1，4	13191	2235	65，5	36，2	0，0	13，3	0，0
1，6	12392	1695	50，5	37，4	0，0	27，1	0，0
1，8	12049	1492	44，0	38，0	0，0	33，0	0，0
2，0	11845	1384	40，2	38，3	0，0	36，5	0，0
2，2	11707	1318	37，6	38，5	0，0	38，9	0，0
2，4	11605	1274	35，7	38，6	0，0	40，7	0，0
2，6	11526	1242	34，2	38，8	0，0	42，0	0，0
2，8	11463	1219	33，0	38，9	0，0	43，1	0，0
3，0	11411	1201	32，0	38，9	0，0	44，0	0，0
3，2	11367	1187	31，2	39，0	0，0	44，8	0，0
3，4	11330	1175	30，5	39，1	0，0	45，4	0，0
3，6	11298	1166	29，9	39，1	0，0	46，0	0，0
3，8	11269	1158	29，4	39，2	0，0	46，5	0，0
4，0	11231	1149	28，7	39，2	0，0	46，8	0，3
4，5	11145	1128	27，2	39，2	0，0	47，5	1，1
5，0	10385	971	22，2	51，8	0，0	39，6	1，3

 ларакд่т ω :

алобтрофท่ง кıvסひ்vov (λ)	Ало́к $\boldsymbol{\lambda}_{\mathbf{l}} \boldsymbol{\sigma} \boldsymbol{\eta}$ (MAD)
0,0	0,12
0,2	0,12
0,4	0,12
0,6	0,12
0,8	0,12
1,0	0,12
1,2	2,24
1,4	5,80
1,6	11,81
1,8	14,39
2,0	15,92
2,2	16,96
2,4	17,72
2,6	18,32
2,8	18,79
3,0	19,18
3,2	19,51
3,4	19,79
3,6	20,04
3,8	20,25
4,0	20,52
4,5	21,11
5,0	23,13

 $\dot{\varepsilon} \omega \mathrm{S} 1$.

алоотроழйS KıvSúvov (λ)	Avaucvó $\mu \varepsilon v o$ кغ́рסос (€)	Тขлıкท่ ало́к $\boldsymbol{\lambda} \mathbf{\jmath} \boldsymbol{\square}$ (σ)							
			Ba $\mu \boldsymbol{\beta} \boldsymbol{\alpha} k ı$ عлiסótทons	Baرßákı	इк入про́ इıtàpı	Ма入ако́ इıtápı	Apaßóoltos	$\mathbf{M \eta \delta ı к \grave { ~ }}$	Bíkos
0,0	6519	2060	0,0	20,0	55,0	0,0	0,0	40,0	7,0
0,2	6519	2060	0,0	20,0	55,0	0,0	0,0	40,0	7,0
0,4	6385	1692	0,0	8,0	60,7	0,0	10,1	36,2	8,5
0,6	6294	1486	0,0	0,0	64,5	0,0	16,8	33,7	9,5
0,8	6294	1486	0,0	0,0	64,5	0,0	16,8	33,7	9,5
1,0	6201	1391	0,0	0,0	64,8	0,0	18,9	31,2	10,5
1,2	5937	1146	0,0	0,0	65,8	0,0	24,9	24,3	13,3
1,4	5812	1049	0,0	0,0	66,3	0,0	27,7	21,1	14,6
1,6	5735	998	0,0	0,0	66,6	0,0	29,4	19,1	15,4
1,8	5664	956	0,0	0,9	66,4	0,0	30,4	17,2	16,1
2,0	5562	902	0,0	4,1	65,4	0,0	30,8	14,6	17,2
2,2	5258	757	0,0	6,8	73,6	0,0	24,4	10,2	18,9
2,4	5097	686	0,0	8,2	77,8	0,0	21,0	7,9	19,8
2,6	4990	643	0,0	9,2	80,7	0,0	18,8	6,3	20,5
2,8	4912	614	0,0	9,9	82,7	0,0	17,2	5,2	20,9
3,0	3083	0	115,0	0,0	0,0	0,0	0,0	0,0	23,0
3,2	3083	0	115,0	0,0	0,0	0,0	0,0	0,0	23,0
3,4	3083	0	115,0	0,0	0,0	0,0	0,0	0,0	23,0
3,6	3083	0	115,0	0,0	0,0	0,0	0,0	0,0	23,0
3,8	3083	0	115,0	0,0	0,0	0,0	0,0	0,0	23,0
4,0	3083	0	115,0	0,0	0,0	0,0	0,0	0,0	23,0

Гivetaı $\varepsilon \pi о \mu \dot{\varepsilon} v \omega \varsigma ~ к а \tau \alpha v o \eta \tau o ́ ~ \pi \omega \varsigma ~ \eta ~ Е к \mu \varepsilon \tau \alpha ̀ \lambda \lambda \varepsilon v o \eta ~ 2 ~ \theta a ~$
 ouvexíøeı va عivaı $\beta ı \dot{\omega} \sigma ı \mu \eta$ каı бто $\mu \dot{\varepsilon} \lambda \lambda о v$.

 ка入入ı $\dot{\rho} \boldsymbol{\varepsilon \iota \alpha ~ (8 0 ~ \sigma \tau \rho \varepsilon ́ \mu \mu \alpha \tau \alpha) . ~}$

 $\beta \dot{\alpha} \sigma \eta$ тоv $\sigma \cup v \tau \varepsilon \lambda \varepsilon \sigma \tau ฑ ่ ~ а л о \sigma \tau \rho о \varphi \eta ่ \varsigma ~ к ı v \delta u ́ v o v . ~$
 2005

алобтрофท่S Kıvסひ่vov（ λ ）	Avaurvó $\mu \varepsilon v o$ ке் $\mathbf{\rho} \mathbf{\delta o s (€) ~}$	Тขлเкท่ $\alpha \pi$ о́к $\boldsymbol{\lambda} \mathbf{l} \boldsymbol{\sigma} \eta$ （ σ ）	$\Sigma \tau \rho \dot{\mu} \mu \mu \alpha \tau \alpha$ ка入入ıе̇рүعıа¢				
			Baرßáккı	ェкスクро́ इıtápı	Малако́ इıtápı	Apaßȯotros	МПбикท்
0，0	20819	4790	139，5	18，8	0，0	16，2	0，0
0，2	20819	4790	139，5	18，8	0，0	16，2	0，0
0，4	20819	4790	139，5	18，8	0，0	16，2	0，0
0，6	20530	4121	122，7	14，6	0，0	37，2	0，0
0，8	20160	3588	108，1	12，1	0，0	54，3	0，0
1，0	19615	2968	88，5	9，2	0，0	76，8	0，0
1，2	19369	2742	79，7	7，9	0，0	86，9	0，0
1，4	19223	2629	74，5	7，1	0，0	92，9	0，0
1，6	19123	2562	70，9	6，6	0，0	97，0	0，0
1，8	19051	2519	68，3	6，2	0，0	100，0	0，0
2，0	18995	2490	66，3	5，9	0，0	102，3	0，0
2，2	18951	2469	64，7	5，6	0，0	104，2	0，0
2，4	18915	2453	63，4	5，4	0，0	105，6	0，0
2，6	18885	2441	62，4	5，3	0，0	106，9	0，0

2,8	18860	2432	61,4	5,1	0,0	107,9	0,0
3,0	18838	2424	60,7	5,0	0,0	108,8	0,0
3,2	18819	2418	60,0	4,9	0,0	109,6	0,0
3,4	18803	2413	59,4	4,8	0,0	110,3	0,0
3,6	18800	2412	59,3	4,8	0,0	110,4	0,0
3,8	18748	2398	58,3	5,3	0,0	111,0	0,0
4,0	16800	1898	45,0	43,9	0,0	85,6	0,0
4,5	15746	1651	37,4	62,9	0,0	73,7	0,5
5,0	15282	1557	34,6	70,4	0,0	68,4	1,1

 ло $\lambda \dot{\cup} \mu \varepsilon ү \dot{\alpha} \lambda о$ о $\beta \alpha \theta \mu$ о́ алобтрофท่ร.

алобтро甲ท่S кıvס̛́vov (λ)	Aлó̀vtŋ Méon Ало́к $\boldsymbol{\lambda} \boldsymbol{\imath} \sigma \boldsymbol{\eta}$ (MAD)
0,0	8,80
0,2	8,80
0,4	8,80
0,6	15,53
0,8	21,70
1,0	30,71
1,2	34,76
1,4	37,18
1,6	38,82
1,8	40,02
2,0	40,93
2,2	41,66
2,4	42,26
2,6	42,75
2,8	43,17
3,0	43,53
3,2	43,84
3,4	44,11
3,6	44,16
3,8	44,40
4,0	46,59
4,5	49,42
5,0	50,33

 Kıvסúvou mou Ku aívetaı amó 0 ह́فऽ 0,4.

алобтроழй KıvỚvov（ λ ）	Avaцعvó $\mu \varepsilon v o$ кغ́pסoc（€）	Тขлıкท่ ало́клıоŋ （o）							
			Ba $\mu \boldsymbol{\beta}$ ákı عлtiótnons	Baرßákı	ェкスпро́ इıtàpı	Ма入ако́上ıtàpı	Apaßóottos	МПбıкท்	Bíkos
0，0	9197	3747	25，25	0，00	43，63	0，00	18，37	87，25	0，00
0，2	9197	3747	25，25	0，00	43，63	0，00	18，37	87，25	0，00
0，4	8984	3127	0，00	0，00	65，55	0，00	36，32	72，63	5，85
0，6	8824	2855	0，00	0，00	66，52	0，00	42，11	65，87	8，55
0，8	8340	2134	0，00	0，00	69，45	0，00	59，68	45，37	16，75
1，0	8172	1944	0，00	0，00	70，46	0，00	65，76	38，29	19，59
1，2	8081	1861	0，00	0，00	71，01	0，00	69，07	34，42	21，13
1，4	7892	1721	18，08	0，00	57，37	0，00	68，61	30，44	22，73
1，6	7800	1657	26，04	0，00	51，43	0，00	68，74	28，29	23，58
1，8	7298	1362	84，85	0，00	6，00	0，00	60，84	22，81	25，78
2，0	7215	1317	92，74	0，00	0，00	0，00	60，33	21，43	26，33
2，2	7198	1309	92，86	0，00	0，00	0，00	60，88	20，76	26，60
2，4	7184	1303	92，96	0，00	0，00	0，00	61，33	20，20	26，82
2，6	4673	0	174，50	0，00	0，00	0，00	0，00	0，00	34，90
2，8	4673	0	174，50	0，00	0，00	0，00	0，00	0，00	34，90
3，0	4673	0	174，50	0，00	0，00	0，00	0，00	0，00	34，90
3，2	4673	0	174，50	0，00	0，00	0，00	0，00	0，00	34，90
3，4	4673	0	174，50	0，00	0，00	0，00	0，00	0，00	34，90
3，6	4673	0	174，50	0，00	0，00	0，00	0，00	0，00	34，90
3，8	4673	0	174，50	0，00	0，00	0，00	0，00	0，00	34，90
4，0	4673	0	174，50	0，00	0，00	0，00	0，00	0，00	34，90

 Екцєта́入入

 $\sigma \tau \rho \alpha \varphi \varepsilon i \quad \kappa \alpha ı \pi \rho о \varsigma ~ v \varepsilon \dot{\varepsilon} \varepsilon \varsigma ~ к а \lambda \lambda ı \dot{\varepsilon} \rho \gamma \varepsilon ı \varepsilon \varsigma, ~ \alpha v ~ \theta \dot{\varepsilon} \lambda \varepsilon ı ~ v \alpha ~ \sigma u v \varepsilon \chi i \sigma \varepsilon ı ~ v \alpha ~$ عivaı $\beta \iota \dot{\omega} \sigma \iota \mu \eta$ каı бто $\mu \dot{\varepsilon} \lambda \lambda$ доv.

 o a $\rho \alpha \beta$ óбıтos.

 $\sigma \tau \rho \dot{\mu} \mu \mu \alpha \tau \alpha)$.
'Ол

 $\sigma \varepsilon \sigma \chi \dot{\varepsilon} \sigma \eta \mu \varepsilon \tau \eta \pi \alpha \lambda l \alpha \dot{\alpha}$.

 $\alpha \pi о \varphi \alpha \sigma i \sigma \varepsilon ı \pi \omega \varsigma ~ \theta \alpha \kappa ı \nu \eta \theta \varepsilon i ́ \sigma \tau о \mu \dot{\varepsilon} \lambda \lambda o v$.

 а入入á $\sigma \varepsilon \mu$ ккро́ лобобто́.

2005

इvvteneotìs алоотрорท̆S кıvסúvov（ λ ）	Avauعvó $\mu \varepsilon v o$ ке்рסос（€）	Тขлเкท่ ало́кえıбŋ （ σ ）						
			В $\alpha \mu \beta$ àкı	इкスпро́ Eıtápı	Малако் इıtápı	Apaßȯotros	Мүбıкท	Tعu̇̇入 α
0，0	17970	2933	67，90	35，17	0，00	20，53	0，00	21，00
0，2	17970	2933	67，90	35，17	0，00	20，53	0，00	21，00
0，4	17970	2933	67，90	34，38	0，00	21，32	0，00	20，57
0，6	17970	2933	67，90	34，38	0，00	21，32	0，00	20，57
0，8	17970	2933	67，90	34，38	0，00	21，32	0，00	20，57
1，0	17970	2933	67，90	34，38	0，00	21，32	0，00	20，57
1，2	17934	2903	67，90	34，38	0，00	21，32	0，00	20，57
1，4	17441	2527	63，49	26，14	0，00	33，98	0，00	16，31
1，6	17033	2253	57，71	20，59	0，00	45，30	0，00	13，60
1，8	16790	2109	54，28	17，29	0，00	52，03	0，00	12，00
2，0	16625	2022	51，94	15，04	0，00	56，62	0，00	10，90
2，2	16503	1964	50，22	13，39	0，00	59，99	0，00	10，10
2，4	16409	1923	48，90	12，11	0，00	62，60	0，00	9，48
2，6	16334	1893	47，83	11，08	0，00	64，68	0，00	8，98
2，8	16272	1870	46，96	10，24	0，00	66，40	0，00	8，57
3，0	16220	1852	46，22	9，54	0，00	67，84	0，00	8，23
3，2	16176	1838	45，60	8，94	0，00	69，07	0，00	7，94
3，4	16138	1826	45，06	8，42	0，00	70，13	0，00	7，68
3，6	16104	1816	44，58	7，96	0，00	71，05	0，00	7，46
3，8	16075	1808	44，17	7，56	0，00	71，87	0，00	7，27
4，0	16049	1802	43，80	7，21	0，00	72，60	0，00	7，09
4，5	15994	1789	43，03	6，47	0，00	74，10	0，00	6，73
5，0	15952	1780	42，43	5，89	0，00	75，29	0，00	6，45

 $\beta \alpha \theta \mu$ ó $\alpha л о \sigma \tau \rho о \varphi \eta$ ท́s кıvঠưvov．

 кıvס่̛vov үıа тп Екцعт $\dot{\alpha} \lambda \lambda \varepsilon v \sigma \eta ~ 4$

ミvvte入をのтท่S алобтрорท̇乌 кıvסひ்vov（ λ ）	Aлó̀vtŋ Mèō Ало́к $\lambda ı \sigma \eta$（MAD）
0，0	10，07
0，2	10，07
0，4	10，14
0，6	10，14
0，8	10，14
1，0	10，14
1，2	10，14
1，4	12，32
1，6	14，69
1，8	16，11
2，0	17，07
2，2	17，78
2，4	18，32
2，6	18，76
2，8	19，12
3，0	19，42
3，2	19，68
3，4	19，90
3，6	20，09
3，8	20，27
4，0	20，42
4，5	20，73
5，0	20，98

 кivסuvo．

上vvteえعのтท่S алобтрофท่S кıvס̇́vov（ λ ）	Avaucvóucvo кغ́рঠos（€）	Тขлıкท่ ало́к $\lambda_{1} \boldsymbol{\sigma} \eta$ （ σ ）								
			Ba μ ßàkı عлiסótnons	Bацßàkı	इкスクро́ इıtápı	Малако́ Eıuápı	Apaßȯotios	Мךбıкท	Tعú $\tau \lambda \alpha$	Вікоя
0，0	9165	3667	0	0，0	24，5	0，0	26，0	52，1	21，0	3，9
0，2	9064	3013	0	0，0	28，2	0，0	48，6	25，8	21，0	14，4
0，4	9002	2778	0	0，0	30，5	0，0	62，4	9，7	21，0	20，9
0，6	8984	2740	0	0，0	31，2	0，0	66，4	5，0	21，0	22，7
0，8	8911	2628	0	11，9	26，8	0，0	63，9	0，0	21，0	24，7
1，0	8893	2608	0	15，6	25，2	0，0	61，8	0，0	21，0	24，7
1，2	8873	2590	0	18，1	24，2	0，0	60，4	0，0	20，9	24，7
1，4	8075	1967	0	24，6	22，5	0，0	63，2	0，0	13，4	24，7
1，6	7741	1742	0	27，3	21，8	0，0	64，3	0，0	10，2	24，7
1，8	7545	1626	0	28，8	21，4	0，0	65，0	0，0	8，4	24，7
2，0	7413	1556	0	29，9	21，1	0，0	65，5	0，0	7，1	24，7
2，2	7311	1507	0	30，4	21，0	0，0	65，8	0，4	6，1	24，6
2，4	6226	1034	0	23，4	52，2	0，0	44，1	0，9	3，0	24，4
2，6	5774	852	0	20，4	65，4	0，0	35，0	1，1	1，7	24，3
2，8	5528	761	0	18，9	72，5	0，0	30，1	1，2	1，0	24，3
3，0	3326	3	123，0	0，1	0，4	0，0	0，1	0，0	0，0	24，7
3，2	3316	0	123，6	0，0	0，0	0，0	0，0	0，0	0，0	24，7
3，4	3316	0	123，6	0，0	0，0	0，0	0，0	0，0	0，0	24，7
3，6	3316	0	123，6	0，0	0，0	0，0	0，0	0，0	0，0	24，7
3，8	3316	0	123，6	0，0	0，0	0，0	0，0	0，0	0，0	24，7
4，0	3316	0	123，6	0，0	0，0	0，0	0，0	0，0	0，0	24，7

 $\tau \omega v \mu \varepsilon \dot{\sigma} \sigma \omega v$ عтŋ่ $\sigma \omega \nu \tau \tau \mu \omega \dot{v} \beta \alpha \mu \beta \alpha \kappa ı v ่$.

Гivetaı $\varepsilon \pi о \mu \dot{\varepsilon} v \omega \varsigma ~ к а \tau \alpha v o \eta \tau o ́ ~ \pi \omega \varsigma ~ \eta ~ Е к \mu \varepsilon \tau \dot{\alpha} \lambda \lambda \varepsilon v \sigma \eta ~ 4 ~ \theta a$ $\pi \rho \dot{\varepsilon} \pi \varepsilon ı ~ v \alpha ~ \sigma \tau \rho \alpha \varphi \varepsilon i ~ к а ı ~ \pi \rho о \varsigma ~ v \dot{\varepsilon ́ \varepsilon \varsigma ~ к а \lambda \lambda ı \dot{~} \rho \gamma \varepsilon ı \varepsilon \varsigma, ~ \alpha v ~} \theta \dot{\varepsilon} \lambda \varepsilon ı ~ v \alpha$

Keqádaıo 7

$\Sigma \nu \mu \pi \varepsilon \rho \dot{\alpha} \sigma \mu \alpha \tau \alpha$

 $\pi \varepsilon \rho \upharpoonright \beta \dot{\alpha} \lambda \lambda$ оvтоৎ $\tau \eta$.

 $\sigma \tau о \mu \dot{\lambda} \lambda \lambda$ ov.

 елілоүŋ்.

 ката่бта⿱㇒⿻二丨刂

 $\sigma \tau \eta v \dot{\alpha} \rho ı \sigma \tau \eta$ o $\rho \gamma \dot{\alpha} v \omega \sigma \eta \tau \eta \varsigma$.

	 1	$\underset{2}{\text { Екцєт } \dot{2} \lambda \lambda \varepsilon v \sigma \eta}$	$\begin{gathered} \hline \text { Екцєт } \dot{\alpha} \lambda \lambda \varepsilon v \sigma \eta \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { Екцєт } \dot{\lambda} \lambda \lambda \varepsilon v \sigma \eta \\ 4 \\ \hline \end{gathered}$
Bäuós	0-2	0-1	0-0,4	0-0,2
алобтрофท̀s лро乌 то kivסuvo	Eג'́ $\chi เ \sigma \tau \eta \dot{\varepsilon} \omega \varsigma$ $\mu \iota \kappa \rho \dot{\eta}$ $\alpha \pi о \sigma \tau \rho о \varphi \dot{\eta}$	E入áरıढтп $\dot{\varepsilon} \omega \varsigma$ $\varepsilon \lambda \alpha \varphi \rho \iota \alpha \dot{\alpha}$ $\alpha \pi о \sigma \tau \rho о \varphi \dot{\eta}$	Aठı่́ $\varphi o \rho \eta$ ह́ $\omega \varsigma$ $\varepsilon \lambda \alpha \dot{\alpha} \iota \sigma \tau \eta$ $\alpha \pi о \sigma \tau \rho о \varphi \eta$	इхz $\delta o ́ v$ A $\dot{\iota} \dot{\alpha} \varphi о \rho \eta$

Пара́ $\rho \tau \eta \mu \alpha$ I

Алобóorıs (Kg)						
'Etos	Bapßàkı	इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ ottópı	Мадако́ ottópı	Apaßóotros	МПбıкฑ	Tعu่̇ $\lambda \lambda \alpha$
1992	393,224	354,362	354,281	1203,970	1246,000	6962,162
1993	419,491	337,552	344,700	890,576	1135,810	6530,652
1994	400,719	324,357	280,143	1074,087	1057,319	409,380
1995	267,163	280,000	285,148	1030,266	1168,152	7398,935
1996	372,308	397,455	316,717	1007,493	1026,457	6501,156
1997	394,589	365,173	292,703	963,275	1348,611	6214,766
1998	374,040	334,334	240,000	993,400	1298,721	5578,336
1999	386,223	381,403	285,052	1110,134	1178,143	7376,759
2000	452,419	396,338	302,358	1108,257	1219,514	7379,485
2001	460,000	364,016	361,488	1054,335	1782,484	7157,759
Méoos Opos	392,02	353,50	306,26	1043,58	1246,12	6150,94

Алобóorıs (Kg)						
'Etos	Bapßàkı	इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho$ ó otuḋpı	Малакó otiópı	Apaßóoltos	МПбıкй	
1992	300,056	396,531	483,495	1203,970	1246,000	6962,162
1993	320,100	377,721	470,419	890,576	1135,810	6530,652
1994	305,776	362,955	382,317	1074,087	1057,319	409,380
1995	203,864	313,321	389,147	1030,266	1168,152	7398,935
1996	284,097	444,752	432,230	1007,493	1026,457	6501,156

$\mathbf{1 9 9 7}$	301,098	408,629	399,457	963,275	1348,611	6214,766
$\mathbf{1 9 9 8}$	285,418	374,119	327,533	993,400	1298,721	5578,336
$\mathbf{1 9 9 9}$	294,714	426,790	389,016	1110,134	1178,143	7376,759
$\mathbf{2 0 0 0}$	345,226	443,502	412,634	1108,257	1219,514	7379,485
$\mathbf{2 0 0 1}$	351,011	407,334	493,330	1054,335	1782,484	7157,759
Mغ́бos Opos	299,14	395,57	417,96	1043,58	1246,12	6150,94

Aлобóorıs (Kg)						
'Etos	Baןßàkı	इклпро் ottópı	Малако́ ottápı	Apaßóoitos	МПбıкท	
1992	300,056	396,531	483,495	1203,970	924,273	6962,162
1993	320,100	377,721	470,419	890,576	842,535	6530,652
1994	305,776	362,955	382,317	1074,087	784,311	409,380
1995	203,864	313,321	389,147	1030,266	866,526	7398,935
1996	284,097	444,752	432,230	1007,493	761,420	6501,156
1997	301,098	408,629	399,457	963,275	1000,389	6214,766
1998	285,418	374,119	327,533	993,400	963,381	5578,336
1999	294,714	426,790	389,016	1110,134	1321,451	7376,759
2000	345,226	443,502	412,634	1108,257	904,626	7379,485
2001	351,011	407,334	493,330	1054,335	1322,233	7157,759
Méoos ${ }^{\prime}$ Opos	299,14	395,57	417,96	1043,58	969,11	6150,94

 то 2005

Méoes тıи̇¢ (€/Kg)						
'Etos	Bapßàkı	इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho$ ȯ otudj	Màakó oučà	Apaßȯotros	Мүбикท่	Tعu̇ $\boldsymbol{\lambda} \lambda \alpha$
1992	0,7742	0,1591	0,1494	0,1567	0,1166	0,0380
1993	0,8661	0,1470	0,1505	0,1489	0,1410	0,0391
1994	0,8801	0,1275	0,1503	0,1324	0,1358	0,0391
1995	0,8625	0,1652	0,1622	0,1645	0,1300	0,0464
1996	0,8469	0,1398	0,1450	0,1258	0,1481	0,0458
1997	0,8003	0,1482	0,1525	0,1515	0,1486	0,0375
1998	0,7713	0,1417	0,1396	0,1323	0,1562	0,0560
1999	0,8484	0,1287	0,1407	0,1363	0,1553	0,0505
2000	0,8745	0,1291	0,1285	0,1350	0,1806	0,0470
2001	0,7668	0,1342	0,1386	0,1377	0,1572	0,0480

 v甲ıбт $\dot{\mu} \mu v \eta$ КАП лрıv то 2005

	Екиєта் $\lambda \lambda \varepsilon \cup \sigma \eta$ 1	Екцєт $\dot{\lambda} \lambda \lambda \varepsilon \cup \sigma \eta$ 2	Екцєт $\dot{\lambda} \lambda \lambda \varepsilon v \sigma \eta$ 3	Екцєт $\dot{\lambda} \lambda \lambda \varepsilon \cup \sigma \eta$ 4
Bapßàkı	116,83	98,92	112,88	97,92
इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ oltápı	42,61	31,95	43,17	34,73
Мадако́ oitápı	40,75	30,25	39,34	32,04
Apaßȯoltos	106,08	104,87	104,11	94,44
МПбикท	97,65	97,66	113,27	82,92
Tعù $\boldsymbol{\lambda} \boldsymbol{\lambda}$ a	-	-	-	114,76

 $\pi \rho ו v$ то 2005

АкаӨápıбто ке̇¢סо¢ (€)							
'Etos	Bapßàkı	इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ ottópı	Ma入akó ottápı	Apaßóoitos	МПбıкฑ	Tعúc $\lambda \alpha$	इúvoio
1992	187,62	63,01	27,73	138,01	47,59	264,40	728,38
1993	246,48	56,26	26,69	81,92	62,52	255,11	729,01
1994	235,83	48,00	16,91	91,52	45,93	16,02	454,22
1995	113,59	52,89	21,06	118,84	54,20	343,65	704,26
1996	198,48	62,21	20,74	76,10	54,33	297,85	709,73
1997	198,95	60,74	19,44	95,26	102,76	233,31	710,50
1998	171,68	54,00	8,30	80,79	105,25	312,13	732,17
1999	210,84	55,71	14,92	100,67	85,27	372,64	840,07
2000	278,82	57,81	13,67	98,95	122,60	346,50	918,38
2001	235,88	55,50	24,91	94,54	182,50	343,40	936,75
Méoos Opos	207,82	56,61	19,44	97,66	86,29	278,50	746,35

 $\pi \rho ו v ~ т о ~ 2005 ~$

АкаӨápıoto кépరos (€)							
'Etos	Bapßàkı	इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ otudipı	Màaкó oučà	Apaßóoitos	МПбикท่		इủvoio
1992	133,39	65,97	57,53	139,22	47,58	264,40	708,11
1993	178,31	58,42	56,11	83,13	62,51	255,11	693,61
1994	170,18	49,18	42,76	92,73	45,92	16,02	416,80
1995	76,90	54,64	48,44	120,05	54,19	343,65	697,90
1996	141,68	65,08	47,99	77,31	54,32	297,85	684,25
1997	142,04	63,42	46,22	96,47	102,75	233,31	684,25

$\mathbf{1 9 9 8}$	121,23	55,89	31,01	82,00	105,24	312,13	707,52
$\mathbf{1 9 9 9}$	151,11	57,80	40,05	101,88	85,26	372,64	808,77
$\mathbf{2 0 0 0}$	202,99	60,15	38,35	100,16	122,59	346,50	870,76
$\mathbf{2 0 0 1}$	170,22	57,57	53,68	95,75	182,49	343,40	903,13
$\mathbf{M \varepsilon ́ \sigma o S}$ Opos	$\mathbf{1 4 8 , 8 1}$	$\mathbf{5 8 , 8 1}$	$\mathbf{4 6 , 2 1}$	$\mathbf{9 8 , 8 7}$	$\mathbf{8 6 , 2 8}$	$\mathbf{2 7 8 , 5 0}$	$\mathbf{7 1 7 , 5 1}$

 КАП лрıv то 2005

'Etos	Bapßàkı	इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho$ ó outápı	Màaкó outápı	Apalóoitos	МПбıкท		इúvo入o
1992	119,44	60,03	48,45	139,98	31,97	264,41	664,28
1993	164,35	52,48	47,03	83,90	46,90	255,11	649,78
1994	156,23	43,24	33,67	93,49	30,31	16,02	372,97
1995	62,95	48,71	39,35	120,82	38,59	343,65	654,07
1996	127,73	59,14	38,90	78,07	38,72	297,85	640,41
1997	128,09	57,49	37,14	97,24	87,15	233,32	640,42
1998	107,27	49,95	21,93	82,77	89,63	312,13	663,69
1999	137,16	51,87	30,96	102,65	69,65	372,65	764,93
2000	189,03	54,22	29,26	100,92	106,99	346,51	826,93
2001	156,27	51,63	44,59	96,51	166,88	343,41	859,30
Méoos Opos	134,85	52,88	37,13	99,63	70,68	278,51	673,68

 КАП лрı то 2005

АкаӨàpıбто ке̇¢סоs							
'Etos	Ванßàkı	इклпро́ ottápı	Ма入акó ottápı	Apaßȯotros	МПбикท่		Lúvodo
1992	134,39	68,47	55,74	149,65	24,81	149,64	582,73
1993	179,31	60,92	54,32	93,56	35,89	140,35	564,38
1994	171,18	51,68	40,97	103,16	23,58	-98,73	291,85
1995	77,90	57,14	46,65	130,48	29,72	228,89	570,81
1996	142,68	67,58	46,20	87,74	29,82	183,09	557,13
1997	143,04	65,92	44,43	106,90	65,74	118,55	544,62
1998	122,23	58,39	29,22	92,43	67,59	197,37	567,25
1999	152,11	60,30	38,26	112,31	122,25	257,88	743,14
2000	203,99	62,65	36,56	110,59	80,46	231,74	726,01
2001	171,22	60,07	51,89	106,18	124,89	228,64	742,91
Méбos 'Opos	149,81	61,31	44,42	109,30	60,48	163,74	589,08

 v甲ıбтд่ $\mu \varepsilon \vee \eta$ КАП лрıv то 2005

	Bapßàkı	इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ ottópı	Малако́ oıápı	Apaßóoltos	Мүбикท่	
Bapßàkı	2097,5	2,4	0,9	-274,7	649,8	-817,2
इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ otiápı	2,4	20,9	9,4	15,3	0,5	169,4
Мадако́ ottápı	0,9	9,4	37,8	39,2	-37,5	-32,8
Apaßȯotros	-274,7	15,3	39,2	348,6	-154,6	208,4
МПбıкท	649,8	0,5	-37,5	-154,6	1883,3	1749,9
Tع̇̇ $\boldsymbol{\tau} \lambda \alpha$	-817,2	169,4	-32,8	208,4	1749,9	10570,3

 $\tau \eta \vee \cup \varphi ⿺ \not \tau \dot{\alpha} \mu \varepsilon \vee \eta$ КАП лрı то 2005

	Bapßákı	इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ ottápt	Мадако́ oúápı	Apaßóottos	МПбикท	Tعút ${ }^{\text {a }}$ 人
Bapßàkı	1221，3	2，0	1，0	－209，6	495，8	－623，6
इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ otuàpt	2，0	26，1	14，3	17，1	0，6	189，6
Мадако́ ottápı	1，0	14，3	70，3	53，5	－51，1	－44，8
Apaßȯotios	－209，6	17，1	53，5	348，6	－154，6	208，4
МПбıкп	495，8	0，6	－51，1	－154，6	1883，3	1749，9
Tع่̇ $\tau \lambda \alpha$	－623，6	189，6	－44，8	208，4	1749，9	10570，3

 v甲ıбт $\dot{\mu} \nu \eta$ КАП лрıv то 2005

	Baرßákı	इк $\boldsymbol{\lambda} \eta \rho \dot{\text { ó }}$ oltápı	Малако́ outápı	Apaßȯoltos	Мףбикท่	Tعu̇̇入 α
Bapßàkı	1221，3	2，0	1，0	－209，6	383，8	－623，6
इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ oitápı	2，0	26，1	14，3	17，1	－6，6	189，6
Мадако́ ottápt	1，0	14，3	70，3	53，5	－8o，8	－44，8
Apaßȯoitos	－209，6	17，1	53，5	348，6	－93，8	208，4
	383，8	－6，6	－80，8	－93，8	1507，3	1952，1
Tعù $\boldsymbol{\lambda} \lambda \boldsymbol{\alpha}$	－623，6	189，6	－44，8	208，4	1952，1	10570，3

 то 2005

	Екцєта̀ $\lambda \lambda \varepsilon \cup \sigma \eta$ 1	Екиєта́ $\lambda \lambda \varepsilon v \sigma \eta$ 2	Екцєта̀ $\lambda \lambda \varepsilon \cup \sigma \eta$ 3	Екцєт $\dot{\alpha} \lambda \lambda \varepsilon v \sigma \eta$ 4
$\Sigma \tau \rho \dot{\varepsilon} \mu \mu \alpha \tau \alpha$阝ац阝акıо⿱宀	$224 \sigma \tau \rho$	80	139，5	67，9
$\Sigma \tau \rho \dot{\varepsilon} \mu \mu \alpha \tau \alpha$ т $\varepsilon \dot{v} \tau \lambda \omega v$		－		21
इvvo入ıкй غ́ктабп	$289 \sigma \tau \rho$	115	174，5	123，6
Потıбтıк் غ́Sapos	224 бт	115	174，5	123，6
Ареццıблора́	To $\dot{\alpha} \theta \rho о \iota \sigma \mu \alpha \tau \omega v ~ \sigma \tau \rho \varepsilon \mu \mu \dot{\alpha} \tau \omega v \beta \alpha \mu \beta \alpha \kappa ı v ่ ~ \kappa \alpha ı ~ \alpha \rho \alpha \beta o ́ \sigma ı \tau о v ~ \pi \rho \varepsilon ̇ л \varepsilon ı ~ v \alpha ~$ 			
$\mu \varepsilon \tau \alpha \boldsymbol{\beta} \boldsymbol{\eta} \tau \dot{\omega} \boldsymbol{v}$ סaлavต்v	32.959 €	9030，40 €	18．843，25 €	12．260，20 €
Aлаıtウ̇oets epyaotias	（ $\left.{ }^{\prime} \rho \varepsilon \varsigma / \sigma \tau \rho \dot{\varepsilon} \mu \mu \alpha\right)$			
Nȯ́ußpıos	208			
$\Delta \varepsilon к \varepsilon ์ \mu \beta$ рıо̧	208			
Iavovápios	216			
Фг β povápıos	192			
Máptıos	208			
Алрілıоя	208			
Máıos	216			
Ioúvios	200			
Iov̇入los	216			
A	216			
इعлте̇น β рıos	200			
Окть́ßрıоя	216			

	A	B	c	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U
1							Píok	харто	$\varphi \cup \lambda \alpha$	kíou											
2			0，00				Ala才tropá			0											
3				$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { B } \\ & \stackrel{y}{z} \end{aligned}$	00000008	$\left\lvert\, \begin{aligned} & \stackrel{5}{y} \\ & \stackrel{y y}{c} \\ & \stackrel{c}{2} \end{aligned}\right.$															$\begin{aligned} & 3 \\ & \text { 3 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { E } \\ & 0 \\ & \text { on } \\ & \text { in } \end{aligned}$
4																					
5																					
6																					
7																					
10		0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0			
11	Оıкоуоиікоі́ 	207，82	56，62	19，44	97，66	86，30	－2，69	$-2,69$	－2，69	－2，69	－2，69	$-2,69$	－2，69	－2，69	$-2,69$	－2，69	－2，69	$-2,69$			
	Перıорıбноі																				
13	ßан阝व́́кı	1	0	0	0	0													0，00	＜	224
14	¿uvodıkи́ ¢́ктабף	1	1	1	1	1													0，00	$<=$	289
15	Потוтikó ćoopos	1	0	0		1													0，00	＜	224
16	Анвıшиттора́	1	0	0	1	－0，5													0，00	$>=$	0
17	¿úvodo нetaßגๆтळ́v 	116，8	42，6	40，8	106，1	97，7	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	0，00	＜	32958，75
18						raıท̇	IS ep	yafías	$\dot{\omega} \rho \varepsilon$	$\boldsymbol{\sigma} \boldsymbol{\rho}$ ．											
19	Noéयßpios	0，38	0，55	0，55	0，25	0	－1	0	0	0	0	0	0	0	0	0	0	0	0，00	＜	208
20		0	0	0	0	0	0	－1	0	0	0	0	0	0	0	0	0	0	0，00	＜	208
21	lavouápios	0	0	0	0	0	0	0	－1	0	0	0	0	0	0	0	0	0	0，00	＜	216
22	Фeßpouáplos	0	0，07	0，07	0	0，07	0	0	0	－1	0	0	0	0	0	0	0	0	0，00	＜	192
23	Máprios	0	0，1	0，1	0	0	0	0	0	0	－1	0	0	0	0	0	0	0	0，00	$<$	208
24	Ampíalos	0，66	0	0	1，42	1，4	0	0	0	0	0	－1	0	0	0	0	0	0	0，00	＜	208
25	Málos	1，7	0	0	0，2	1，4	0	0	0	0	0	0	－1	0	0	0	0	0	0，00	＜	216
26	loúvios	1	0，3	0，3	1，73	1，4	0	0	0	0	0	0	0	－1	0	0	0	0	0，00	＜	200
27	loúdios	2，8	0	0	1，5	1，5	0	0	0	0	0	0	0	0	－1	0	0	0	0，00	$<$	216
28	Aúyoutios	0，85	0	0	1，5	1，4	0	0	0	0	0	0	0	0	0	－1	0	0	0，00	＜	216
29	之ептז仑́यßplos	0，75	0	0	0	1，4	0	0	0	0	0	0	0	0	0	0	－1	0	0，00	＜	200
30	Окто́ßpıо̧	0，67	0	0	0，7	0	0	0	0	0	0	0	0	0	0	0	0	－1	0，00	$<=$	216
31			E（U）	＝	E	－		т\＆$\lambda \varepsilon \sigma$ т σ тоо ठúvou		＊	Tut Atró \qquad	тıкŋ́ $k \lambda ı \sigma$ б）									
32			0	$=$	0	－		0，0		＊		0									

	A	B	c	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U
1							Píok	Харто	$\varphi \cup \lambda \alpha$	kíou											
2			0,00				Aıaणtopá			0											
3		$\begin{aligned} & \text { 空 } \\ & 0 \\ & \stackrel{y}{7} \\ & 0 \end{aligned}$																			$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { W } \\ & \text { on } \\ & \text { in } \end{aligned}$
4																					
5																					
6																					
7																					
8																					
9																					
10		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0			
11	Oiкоуоиікоі́ đuvieA\&	134,85	52,88	37,13	99,63	70,68	-2,69	-2,69	-2,69	$-2,69$	-2,69	-2,69	-2,69	-2,69	-2,69	-2,69	-2,69	-2,69			
13	ПЕрІорıбио́ऽ үіа ßанßókı	1	0	0	0	0													0,00	<	139,5
14	¿uvodıкй દ́ктабף	1	1	1	1	1													0,00	<	174,5
15	Попוбтіко́ δ ¢́apos	1	0	0	1	1													0,00	<	174,5
16	Aцвıиоттора́	1	0	0	1	-0,5													0,00	$>=$	0
17	ठатауต́v	112,9	43,2	39,3	104,1	113	2,79	2,79	2,79	2,79	2,79	2,79	2,79	2,79	2,79	2,79	2,79	2,79	0,00	$<=$	18843,25
18						ппипท́	OEIS ep	yafías	($\dot{\rho}$ ¢	/ σ ¢ ρ.											
19	NoÉjßplos	0,38	0,55	0,55	0,25	0	-1	0	0	0	0	0	0	0	0	0	0	0	0,00	<	208
20		0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0,00	<	208
21	lavouáplos	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0,00	<	216
22	Фeßpouáplos	0	0,07	0,07	0	0,07	0	0	0	-1	0	0	0	0	0	0	0	0	0,00	<	192
23	Máprios	0	0,1	0,1	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0,00	<	208
24	Ampialos	0,66	0	0	1,42	1,4	0	0	0	0	0	-1	0	0	0	0	0	0	0,00	$<$	208
25	Móloç	1,7	0	0	0,2	1,4	0	0	0	0	0	0	-1	0	0	0	0	0	0,00	<	216
26	loúvios	1	0,3	0,3	1,73	1,4	0	0	0	0	0	0	0	-1	0	0	0	0	0,00	<	200
27	loúdios	2,8	0	0	1,5	1,5	0	0	0	0	0	0	0	0	-1	0	0	0	0,00	$<$	216
28	Aúyoutios	0,85	0	0	1,5	1,4	0	0	0	0	0	0	0	0	0	-1	0	0	0,00	<	216
29		0,75	0	0	0	1,4	0	0	0	0	0	0	0	0	0	0	-1	0	0,00	<	200
30	Октйßpıo̧	0,67	0	0	0,7	0	0	0	0	0	0	0	0	0	0	0	0	-1	0,00	$<$	216
31			$E(U)$	=	E	-		тє入є σ т отроч ठúvou		*	Tut Аттó \qquad	тוк!́ $\kappa \lambda ı \boldsymbol{\eta}$ $\sigma)$									
32			0	$=$	0	-		0,0		*		0									

Maрápтqua II

 то 2005

Mėoe¢ tıцદ̇¢ (€/Kg)						
${ }^{\prime} \mathbf{E r o s}$	Bapßàkı	इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ ottápı	Màakó бtújpı	Apaßȯбitos	МПбıкท	Tع̇̇ $\boldsymbol{\tau} \lambda \alpha$
1992	0,1761	0,1591	0,1494	0,1567	0,1166	0,0380
1993	0,2307	0,1470	0,1505	0,1489	0,1410	0,0391
1994	0,3097	0,1275	0,1503	0,1324	0,1358	0,0391
1995	0,3539	0,1652	0,1622	0,1645	0,1300	0,0464
1996	0,2151	0,1398	0,1450	0,1258	0,1481	0,0458
1997	0,3249	0,1482	0,1525	0,1515	0,1486	0,0375
1998	0,3309	0,1417	0,1396	0,1323	0,1562	0,0560
1999	0,3071	0,1287	0,1407	0,1363	0,1553	0,0505
2000	0,3857	0,1291	0,1285	0,1350	0,1806	0,0470
2001	0,2975	0,1342	0,1386	0,1377	0,1572	0,0480

 v甲ıт兀д́ $\mu \varepsilon \vee \eta$ КАП $\mu \varepsilon \tau \dot{\alpha}$ то 2005

	Екиعта̇д $\lambda \varepsilon \cup \sigma \eta$ 1	Екцєт $\dot{\alpha} \lambda \lambda \varepsilon v \sigma \eta$ 2	Екцєт $\dot{\alpha} \lambda \lambda \varepsilon \cup \sigma \eta$ 3	Екиєт $\dot{\lambda} \lambda \lambda \varepsilon v \sigma \eta$ 4
Ba $\mu \boldsymbol{\beta}$ áкı 	30	30	30	30
Ваиßàkı	116,83	98,92	112,88	97,92
इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ oitàpı	42,61	31,95	43,17	34,73
Малако் ottápı	40,75	30,25	39,34	32,04

Apaßóottos	106,08	104,87	104,11	94,44
$\mathbf{M \eta \delta u к \eta}$	97,65	97,66	113,27	82,92
	-	-	-	114,76

 $\mu \varepsilon \tau \alpha \dot{\alpha}$ то 2005

АкаӨápıбто ке̇рסоৎ (€)

'Etos	Baرßákı 	Bapßàkı	इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ otiópı	Màakó otiópı	Apaßóoitos	МПбıкй	Tعu̇t ${ }^{\text {a }}$	इủvodo
1992	29,40	11,81	29,76	12,18	94,59	47,59	264,41	489,74
1993	29,40	39,35	23,02	11,14	38,51	62,52	255,11	459,04
1994	29,40	66,68	14,76	1,35	48,10	45,93	16,02	222,25
1995	29,40	37,13	19,64	5,51	75,43	54,21	343,65	564,98
1996	29,40	22,66	28,97	5,18	32,68	54,34	297,85	471,08
1997	29,40	70,78	27,49	3,89	51,85	102,77	233,32	519,49
1998	29,40	66,34	20,76	-7,26	37,38	105,25	312,13	564,00
1999	29,40	61,19	22,47	-0,64	57,26	85,27	372,65	627,59
2000	29,40	117,06	24,57	-1,88	55,53	122,61	346,51	693,78
2001	29,40	79,42	22,26	9,35	51,12	182,50	343,41	717,47
Méoos 'Opos	29,40	57,24	23,37	3,88	54,24	86,30	278,51	532,94

 КАП $\mu \varepsilon \tau \alpha \dot{\alpha}$ то 2005

'Etos	Ba $\mu \boldsymbol{\beta}$ а̇кı 	Варßàkı	इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ oıtópı	Màakó ottápı	Apaßóottos	МПбıкฑ	Tعu̇t ${ }^{\text {a }}$ a	इúvo入o
1992	29,40	13,31	47,13	41,98	95,80	47,58	264,41	539,61
1993	29,40	34,33	39,58	40,56	39,72	62,51	255,11	501,21

$\mathbf{1 9 9 4}$	29,40	55,18	30,34	27,20	49,31	45,92	16,02	253,39
$\mathbf{1 9 9 5}$	29,40	32,64	35,81	32,88	76,64	54,20	343,65	605,22
$\mathbf{1 9 9 6}$	29,40	21,59	46,24	32,43	33,89	54,33	297,85	515,74
$\mathbf{1 9 9 7}$	29,40	58,31	44,59	30,67	53,06	102,76	233,32	552,10
$\mathbf{1 9 9 8}$	29,40	54,93	37,05	15,46	38,59	105,24	312,13	592,80
$\mathbf{1 9 9 9}$	29,40	50,99	38,97	24,49	58,47	85,26	372,65	660,23
$\mathbf{2 0 0 0}$	29,40	93,62	41,32	22,79	56,74	122,60	346,51	712,98
$\mathbf{2 0 0 1}$	29,40	64,91	38,73	38,12	52,33	182,49	343,41	749,40
Méбos Opos	$\mathbf{2 9 , 4 0}$	$\mathbf{4 7 , 9 8}$	$\mathbf{3 9 , 9 8}$	$\mathbf{3 0 , 6 6}$	$\mathbf{5 5 , 4 5}$	$\mathbf{8 6 , 2 9}$	$\mathbf{2 7 8 , 5 1}$	$\mathbf{5 6 8 , 2 7}$

 $\mu \varepsilon \tau \alpha \dot{\alpha}$ то 2005

'Etos	Ba $\mu \boldsymbol{\beta} \dot{\text { ákı }}$ 	Bapßàkı	इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ ottápı	Màakó outápı	Apaßȯoitos	МПбıкท்	T $\varepsilon \dot{v} \tau \lambda \alpha$	इv̇vo ${ }^{\text {a }}$
1992	29,40	-0,65	35,91	32,89	96,56	31,97	264,41	490,49
1993	29,40	20,37	28,36	31,47	40,48	46,90	255,11	452,09
1994	29,40	41,22	19,12	18,11	50,07	30,31	16,02	204,27
1995	29,40	18,68	24,59	23,79	77,40	38,59	343,65	556,10
1996	29,40	7,63	35,02	23,34	34,65	38,72	297,85	466,62
1997	29,40	44,35	33,37	21,58	53,82	87,15	233,32	502,98
1998	29,40	40,97	25,83	6,37	39,35	89,63	312,13	543,68
1999	29,40	37,03	27,75	15,40	59,23	69,65	372,65	611,11
2000	29,40	79,66	30,10	13,70	57,50	106,99	346,51	663,86
2001	29,40	50,95	27,51	29,03	53,09	166,88	343,41	700,28
Méoos Opos	29,40	34,02	28,76	21,57	56,21	70,68	278,51	519,15

 КАП $\mu \varepsilon \tau \alpha \dot{\alpha}$ то 2005

АкаӨápıбто ке̇¢бо¢（€）								
＇Etos	Ba $\mu \boldsymbol{\beta}$ к̀кı 	Bapßákı	इк $\boldsymbol{\lambda} \boldsymbol{\eta} \rho \dot{\text { ó }}$ ottápı	Màakó outápı	Apaßóoitos	МПбıкท̇	Tعú $\boldsymbol{\lambda} \lambda \alpha$	इúvo入o
1992	29，40	14，31	44，35	40，19	106，23	24，82	149，65	408，95
1993	29，40	35，33	36，80	38，77	50，15	35，89	140，35	366，70
1994	29，40	56，18	27，56	25，41	59，74	23，59	－98，74	123，15
1995	29，40	33，64	33，03	31，09	87，07	29，73	228，89	472，85
1996	29，40	22，59	43，46	30，64	44，32	29，82	183，09	383，34
1997	29，40	59，31	41，81	28，88	63，49	65，75	118，56	407，19
1998	29，40	55，93	34，27	13，67	49，02	67，59	197，37	447，25
1999	29，40	51，99	36，19	22，70	68，90	122，26	257，89	589，32
2000	29，40	94，62	38，54	21，00	67，17	80，47	231，75	562，94
2001	29，40	65，91	35，95	36，33	62，76	124，90	228，65	583，90
Méoos ＇Opos	29，40	48，98	37，20	28，87	65，88	60，48	163，75	434，56

 v甲ıтта́ $\mu \varepsilon \vee \eta$ КАП $\mu \varepsilon \tau \dot{\alpha}$ то 2005

Пivakas 土tagлорàs $^{\text {a }}$						
	Bацßákı	इк入про́ oıtápı	Мадако́ oućápı	Apaßóoitos	$\mathbf{M \eta}$ ¢ıкй	Tev̇t ${ }^{\text {a }}$ 人
Bapßàkı	936，1	－40，9	－95，1	－145，6	825，1	217，6
इкえпро́ oltápı	－40，9	20，9	9，4	15，3	0，5	169，4
Малако́ ottápı	－95，1	9，4	37，8	39，2	－37，5	－32，8
Apaßȯotios	－145，6	15，3	39，2	348，6	－154，6	208，4
МПбıкท	825，1	0，5	－37，5	－154，6	1883，3	1749，9
Tعù̇ λ a	217，6	169，4	－32，8	208，4	1749，9	10570，3

 $\tau \eta \vee \cup \varphi \iota \sigma \tau \dot{\alpha} \mu \varepsilon \vee \eta$ КАП $\mu \varepsilon \tau \alpha \dot{\alpha}$ то 2005

	В $\alpha \mu \boldsymbol{\beta} \mathbf{\alpha \prime k}$	इк $\boldsymbol{\lambda} \boldsymbol{\rho} \rho \dot{\text { ó }}$ ottápı	Ma入aкó otcápı	Apaßóotros	МПбикท	Tعu̇t $\lambda \alpha$
Bapßàkı	545，1	－34，9	－99，0	－111，1	629，6	166，0
इклпро́ otuápı	－34，9	26，1	14，3	17，1	0，6	189，6
Мадако́ ottàpt	－99，0	14，3	70，3	53，5	－51，1	－44，8
Apaßȯotios	－111，1	17，1	53，5	348，6	－154，6	208，4
МПбикท	629，6	0，6	－51，1	－154，6	1883，3	1749，9
	166，0	189，6	－44，8	208，4	1749，9	10570，3

 v甲ıбтд́ $\mu \varepsilon \vee \eta$ КАП $\mu \varepsilon \tau \dot{\alpha}$ то 2005

	Bapßákı	ェк入ךро́ ottàpı	Мадако́ oitàpı	Apaßóoitos	МПбикท	Tعút $\lambda \alpha$
Bapßàkı	545，1	－34，9	－99，0	－111，1	488，0	166，0
इкえпро் ottópı	－34，9	26，1	14，3	17，1	－6，6	189，6
Малако் ottápı	－99，0	14，3	70，3	53，5	－80，8	－44，8
Apaßóottos	－111，1	17，1	53，5	348，6	－93，8	208，4
Мךঠıкп	488，0	－6，6	－80，8	－93，8	1507，3	1952，1
Tعv่̇ ${ }^{\text {a }}$	166，0	189，6	－44，8	208，4	1952，1	10570，3

 то 2005

	Екцєта̀ $\lambda \lambda \varepsilon \cup \sigma \eta$ 1	2	Екцєта́入入єvбп 3	Екцєта̀ $\lambda \lambda \varepsilon \cup \sigma \eta$ 4
Ел兀入éそ̧цŋ غ́ктаоך	255 бт ρ	$72 \sigma \tau \rho$	$160 \sigma \tau \rho$	98，5 $\sigma \tau \rho$
ェvvoдıкท் غ̇ктаоך	$289 \sigma \tau \rho$	115 \％ρ	174，5 $\sigma \tau \rho$	123，6 $\sigma \tau \rho$
Потıбтıко́ $\dot{\text { éSapos }}$	289 от	115 бт	174，5 $\sigma \tau \rho$	123，6 бт
Ареццгтлора́	 			
Oүко¢ vepoù	$89.600 \mathrm{~m}^{3}$	$32.000 \mathrm{~m}^{3}$	$69.000 \mathrm{~m}^{3}$	$62.080 \mathrm{~m}^{3}$
$\Sigma \tau \rho \dot{\varepsilon} \mu \mu \alpha \tau \alpha$ $\boldsymbol{\beta i ́ \kappa o v}$	 ßікои			
$\Sigma \tau \rho \dot{\varepsilon} \mu \mu \alpha \tau \alpha$ т $\varepsilon \dot{v} \tau \lambda \omega v$	－			$21 \sigma \tau \rho$
Súvoえo $\boldsymbol{\mu \varepsilon \tau \alpha \beta \lambda \eta \tau \dot { \omega } v}$ Saлavळ゙v	32.959 €	9.030 €	18.843 €	12.260 €
Алаıtウ்беเS epyaoias				
Noء̇дßpıos	208			
$\Delta \varepsilon к \dot{\varepsilon} \mu \beta$ рıо̧	208			
Iavovápios	216			
	192			
Máptıos	208			
Алрі λ_{1} о¢	208			
Máıos	216			
Ioúvios	200			
Iov̇入los	216			
Aúpouotos	216			
	200			
Окть́ßpıos	216			

	A	B	c	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W
1								Píoko	харто	$\varphi \cup \lambda \alpha$	kíou												
2	Avaцıvóиєvo Képбos			0，00				Aıळणтора́			0												
3																							
4			$\begin{aligned} & \text { 등 } \\ & \text { 坒 } \\ & 0 \end{aligned}$				$\begin{aligned} & \stackrel{\boxed{y}}{\stackrel{y}{y}} \\ & \stackrel{y}{c} \\ & \stackrel{c}{z} \end{aligned}$	$\begin{aligned} & \text { 告 } \\ & \text { 音 } \end{aligned}$															
5																							
6																							
7																							
11		0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0			
12		29，40	34，02	28，76	21，57	56，21	70，68	－13，09	－2，69	－2，69	－2，69	－2，69	－2，69	－2，69	－2，69	－2，69	－2，69	－2，69	－2，69	－2，69			
14	Пурıорıбноі́																						
15		1	1	1	1	1	1	0													0，00	$>=$	160
16	¿uvoAıкп̆ Éktaon	1	1	1	1	1	1	0													0，00	＜＝	174，5
17	Попו丁tikó ¢́douos	1	1	0	0	1	1	0													0，00	＜	174，5
18	Aцвішиттора́	1	1	0	0	1	－0，5	0													0，00	＜	0
19		150	400	0	0	700	600	0													0，00	$>=$	69000
20	Перıорıбио́s үıа Зіко	－0，2	－0，2	－0，2	－0，2	－0，2	0，2	1													0，00	＝	0
21		30	112，9	43，2	39，3	104，1	113	13，09	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	0，00	＜	18843，3
22																							
23	Noéjßplos	0	0，38	0，55	0，55	0，25	0	0	－1	0	0	0	0	0	0	0	0	0	0	0	0，00	＜	208
24	Аعкќиßроб	0	0	0	0	0	0	0	0	－1	0	0	0	0	0	0	0	0	0	0	0，00	$<$	208
25	lavouáplos	0	0	0	0	0	0	0	0	0	－1	0	0	0	0	0	0	0	0	0	0，00	＜	216
26	Фeßpouáplos	0	0	0，07	0，07	0	0，07	0	0	0	0	－1	0	0	0	0	0	0	0	0	0，00	＜	192
27	Máprios	0	0	0，1	0，1	0	0	0	0	0	0	0	－1	0	0	0	0	0	0	0	0，00	$<=$	208
28	Ampíalos	0，35	0，66	0	0	1，42	1，4	0	0	0	0	0	0	－1	0	0	0	0	0	0	0，00	＜	208
29	Mólos	0，13	1，7	0	0	0，2	1，4	0	0	0	0	0	0	0	－1	0	0	0	0	0	0，00	＜	216
30	loúvios	1	1	0，3	0，3	1，73	1，4	0	0	0	0	0	0	0	0	－1	0	0	0	0	0，00	$<$	200
31	loúdios	0	2，8	0	0	1，5	1，5	0	0	0	0	0	0	0	0	0	－1	0	0	0	0，00	＜	216
32	Aúyoutios	0	0，85	0	0	1，5	1，4	0	0	0	0	0	0	0	0	0	0	－1	0	0	0，00	＜	216
33		0	0，75	0	0	0	1，4	0	0	0	0	0	0	0	0	0	0	0	－1	0	0，00	＜	200
34	Окто́ßpıоц	0	0，67	0	0	0，7	0	0，35	0	0	0	0	0	0	0	0	0	0	0	－1	0，00	＜	216
35																							
36				E（U）	＝	E	－		を $\lambda \varepsilon \sigma т$ бтро甲 úvou		＊		mikí k $\lambda \boldsymbol{\sigma} \boldsymbol{\eta}$ $\sigma)$										
37				0	$=$	0	－		0，0		＊		0										

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	\checkmark	W	X																						
1								Рі́бко харточилакі́о																																						
2	Avaцıvónєvo Képбos			0，00				Aloumtopá		0																																				
3																																														
4							$\begin{aligned} & \stackrel{\bar{y}}{\stackrel{y}{c}} \\ & \frac{c}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 뫃 } \\ & \stackrel{\rightharpoonup}{\vec{\omega}} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { び } \\ & \text { 总 } \end{aligned}\right.$																																					
5																								$\begin{aligned} & \text { n } \\ & 0 \\ & 0.3 \\ & \text { on } \\ & \text { in } \\ & \text { is } \\ & 0 \end{aligned}$																						
7																																														
8																																														
9 10 11																																														
11		0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0，0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0																										
12		29，40	48，98	37，20	28，87	65，88	60，48	163，75	－12，85	－2，69	－2，69	－2，69	－2，69	－2，69	－2，69	－2，69	－2，69	－2，69	－2，69	69																										
	Пурıояıиоі́																																													
15		1	1	1	1	1	1	1	0													0，00	＞＝	98，5																						
16	¿uvodik！¢́ктобך	1	1	1	1	1	1	1	0													0，00	$<=$	123，6																						
17		1	1	0	0	1	1	1	0													0，00	＜	123，6																						
18	АцвıиІттора́	1	1	0	0	1	－0，5	0	0													0，00	＜	0																						
19	Перıорıбرо́с óyкоu vepoú	150	400	0	0	700	600	600	0													0，00	＞＝	62080																						
20		－0，2	－0，2	－0，2	－0，2	－0，2	0，2	－0，2	1													0，00	$=$	0																						
21		0	0	0	0	0	0	1	0													0，00	＜$=$	21																						
22		30	97，92	34，7	32	94，44	82,9	114，76	12，85	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	2，79	0，00	＜	12260																						
23																																														
24	NoÉリßpios	0	0，38	0，55	0，55	0，25	0	0，4	0	－1	0	0	0	0	0	0	0	0	0	0	0	0，00	＜	208																						
25	Aعк	0	0	0	0	0	0	0	0	0	－1	0	0	0	0	0	0	0	0	0	0	0，00	＜	208																						
26	lavouápios	0	0	0	0	0	0	0	0	0	0	－1	0	0	0	0	0	0	0	0	0	0，00	＜	216																						
27	Фeßpouápios	0	0	0，07	0，07	0	0，07	0，59	0	0	0	0	－1	0	0	0	0	0	0	0	0	0，00	＜	192																						
28	Máprios	0	0	0，1	0，1	0	0	0，36	0	0	0	0	0	－1	0	0	0	0	0	0	0	0，00	＜	208																						
29	Ampíalos	0，35	0，66	0	0	1，42	1，4	3，68	0	0	0	0	0	0	－1	0	0	0	0	0	0	0，00	＜	208																						
30	Mólos	0，13	1，7	0	0	0，2	1，4	0，85	0	0	0	0	0	0	0	－1	0	0	0	0	0	0，00	＜	216																						
31	loúvios	1	1	0，3	0，3	1，73	1，4	0，6	0	0	0	0	0	0	0	0	－1	0	0	0	0	0，00	＜	200																						
32	loúdios	0	2，8	0	0	1，5	1，5	0，5	0	0	0	0	0	0	0	0	0	－1	0	0	0	0，00	＜	216																						
33	Aúyouotos	0	0，85	0	0	1，5	1，4	0，6	0	0	0	0	0	0	0	0	0	0	－1	0	0	0，00	＜	216																						
34		0	0，75	0	0	0	1，4	0，9	0	0	0	0	0	0	0	0	0	0	0	－1	0	0，00	＜	200																						
35	Oктйßplos	0	0，67	0	0	0，7	0	0，65	0，35	0	0	0	0	0	0	0	0	0	0	0	－1	0，00	＜	216																						
36																																														
37				E（U）	$=$	E	－	โuvtel Аттобт Kıvoúvou	ไєбти́s ро甲и́s vou（ λ ）	＊	Tut Atió （	$\sigma \text {) }$																																		
38				0	$=$	0	－	0,		＊		0																																		

Bı $\beta \lambda 1$ оүpapía

1. Elamin et Rogers, Estimation and use of risk aversion coefficient for traditional dryland agriculture in western Sudan, Agricultural Ecomonics, 7 (1992)
2. Hardaker J.B., Coping with risk in agriculture, Cabi Publishing, 2004
3. Goodwin P. Wright G.,Decision Analysis for Management Judgment, $\varepsilon \kappa \delta$. Wiley 1998
4. Kay R., Farm management, McGraw-Hill Inc, 1983
5. Kay R, Edwards W., McGraw-Hill Series in Agricultural Economics, McGraw-Hill Inc., 1994
6. Lumby S. Jones C.,Corporate Finance theory and practice, Thomson 2003
7. Lumby S.,Jones C, Investment Appraisal \& Financial Decisions, Thomson 2002
8. Managing Risk in Farming: Concepts, Research and Analysis, Economic Research Service, USDA
9. Petsakos A., Rozakis S., Tsiboukas K., Cotton growers' decisions in the new CAP context: A mean-variance modeling approach
10. Rae A., Agricultural Management Economics, Cab International, 1994
11. Reilly F.,Brown K., Investment Analysis and Portfolio Management, Thomson Learning 2000
12. Roche et McQuinn, Riskier product portfolio under decoupled payments, European Review of Agricultural Economics Vol. 31 (2004)
 үع $\omega \rho$ үіа, 1976

 єкठ. Млغ่vo̧, 2003
 2006

[^0]: ${ }^{1}$ Agricultural Management Economics, Rae A., Cab International, 1994

[^1]: ${ }^{2}$ Farm management, Kay R., McGraw-Hill Inc, 1983

[^2]:

[^3]: 4 Investment Analysis and Portfolio Management, Reilly F.,Brown K., Thomson Learning 2000

[^4]: 5 Investment Appraisal \& Financial Decisions, Lumby S.,Jones C, Thomson 2002

[^5]: ${ }^{6}$ Corporate Finance theory and practice, Lumby S. Jones C., Thomson 2003

[^6]: ${ }^{7}$ McGraw-Hill Series in Agricultural Economics, Kay R, Edwards W., McGraw-Hill Inc., 1994

[^7]: ${ }^{8}$ Anderson J．R．，Dillon J．L．，Risk analysis in Dryland Farming Systems，Farminh Systems Management Series No 2， 19927

[^8]: Палабштๆрiov 2002

[^9]: ${ }^{10}$ Decision Analysis for Management Judgment, Goodwin P. Wright G., $\varepsilon \kappa \delta$. Wiley 1998

[^10]:

